These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8946387)
1. Rhodoquinone is synthesized de novo by Fasciola hepatica. Van Hellemond JJ; Luijten M; Flesch FM; Gaasenbeek CP; Tielens AG Mol Biochem Parasitol; 1996 Nov; 82(2):217-26. PubMed ID: 8946387 [TBL] [Abstract][Full Text] [Related]
2. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. Van Hellemond JJ; Klockiewicz M; Gaasenbeek CP; Roos MH; Tielens AG J Biol Chem; 1995 Dec; 270(52):31065-70. PubMed ID: 8537365 [TBL] [Abstract][Full Text] [Related]
3. The kynurenine pathway is essential for rhodoquinone biosynthesis in Roberts Buceta PM; Romanelli-Cedrez L; Babcock SJ; Xun H; VonPaige ML; Higley TW; Schlatter TD; Davis DC; Drexelius JA; Culver JC; Carrera I; Shepherd JN; Salinas G J Biol Chem; 2019 Jul; 294(28):11047-11053. PubMed ID: 31177094 [TBL] [Abstract][Full Text] [Related]
4. Physiological role of rhodoquinone in Euglena gracilis mitochondria. Castro-Guerrero NA; Jasso-Chávez R; Moreno-Sánchez R Biochim Biophys Acta; 2005 Dec; 1710(2-3):113-21. PubMed ID: 16325648 [TBL] [Abstract][Full Text] [Related]
5. Rhodoquinone-dependent electron transport chain is essential for Caenorhabditis elegans survival in hydrogen sulfide environments. Romanelli-Cedrez L; Vairoletti F; Salinas G J Biol Chem; 2024 Sep; 300(9):107708. PubMed ID: 39178951 [TBL] [Abstract][Full Text] [Related]
6. Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics. Salinas G; Langelaan DN; Shepherd JN Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148278. PubMed ID: 32735860 [TBL] [Abstract][Full Text] [Related]
7. Rhodoquinone reaction site of mitochondrial complex I, in parasitic helminth, Ascaris suum. Yamashita T; Ino T; Miyoshi H; Sakamoto K; Osanai A; Nakamaru-Ogiso E; Kita K Biochim Biophys Acta; 2004 Feb; 1608(2-3):97-103. PubMed ID: 14871486 [TBL] [Abstract][Full Text] [Related]
8. Alternative splicing of Tan JH; Lautens M; Romanelli-Cedrez L; Wang J; Schertzberg MR; Reinl SR; Davis RE; Shepherd JN; Fraser AG; Salinas G Elife; 2020 Aug; 9():. PubMed ID: 32744503 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis and applications of prenylquinones. Kawamukai M Biosci Biotechnol Biochem; 2018 Jun; 82(6):963-977. PubMed ID: 29457959 [TBL] [Abstract][Full Text] [Related]
10. Rhodoquinone biosynthesis in Del Borrello S; Lautens M; Dolan K; Tan JH; Davie T; Schertzberg MR; Spensley MA; Caudy AA; Fraser AG Elife; 2019 Jun; 8():. PubMed ID: 31232688 [TBL] [Abstract][Full Text] [Related]
11. Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction. Van Hellemond JJ; Van Remoortere A; Tielens AG Parasitology; 1997 Aug; 115 ( Pt 2)():177-82. PubMed ID: 10190173 [TBL] [Abstract][Full Text] [Related]
12. Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum. Brajcich BC; Iarocci AL; Johnstone LA; Morgan RK; Lonjers ZT; Hotchko MJ; Muhs JD; Kieffer A; Reynolds BJ; Mandel SM; Marbois BN; Clarke CF; Shepherd JN J Bacteriol; 2010 Jan; 192(2):436-45. PubMed ID: 19933361 [TBL] [Abstract][Full Text] [Related]
13. Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae. Bernert AC; Jacobs EJ; Reinl SR; Choi CCY; Roberts Buceta PM; Culver JC; Goodspeed CR; Bradley MC; Clarke CF; Basset GJ; Shepherd JN Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Sep; 1864(9):1226-1234. PubMed ID: 31121262 [TBL] [Abstract][Full Text] [Related]
14. Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. Hoffmeister M; van der Klei A; Rotte C; van Grinsven KW; van Hellemond JJ; Henze K; Tielens AG; Martin W J Biol Chem; 2004 May; 279(21):22422-9. PubMed ID: 15014069 [TBL] [Abstract][Full Text] [Related]
15. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system. Takamiya S; Matsui T; Taka H; Murayama K; Matsuda M; Aoki T Arch Biochem Biophys; 1999 Nov; 371(2):284-9. PubMed ID: 10545216 [TBL] [Abstract][Full Text] [Related]
16. Fasciola hepatica miracidia are dependent on respiration and endogenous glycogen degradation for their energy generation. Boyunaga H; Schmitz MG; Brouwers JF; Van Hellemond JJ; Tielens AG Parasitology; 2001 Feb; 122(Pt 2):169-73. PubMed ID: 11272647 [TBL] [Abstract][Full Text] [Related]
17. The energy metabolism of Fasciola hepatica during its development in the final host. Tielens AG; van den Heuvel JM; van den Bergh SG Mol Biochem Parasitol; 1984 Nov; 13(3):301-7. PubMed ID: 6527693 [TBL] [Abstract][Full Text] [Related]
18. The electron transport chain in anaerobically functioning eukaryotes. Tielens AG; Van Hellemond JJ Biochim Biophys Acta; 1998 Jun; 1365(1-2):71-8. PubMed ID: 9693724 [TBL] [Abstract][Full Text] [Related]
19. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. Miyadera H; Amino H; Hiraishi A; Taka H; Murayama K; Miyoshi H; Sakamoto K; Ishii N; Hekimi S; Kita K J Biol Chem; 2001 Mar; 276(11):7713-6. PubMed ID: 11244089 [TBL] [Abstract][Full Text] [Related]
20. A Minimal Kynurenine Pathway Was Preserved for Rhodoquinone but Not for Comas-Ghierra R; Alshaheeb A; McReynolds MR; Shepherd JN; Salinas G Antioxid Redox Signal; 2024 May; 40(13-15):737-750. PubMed ID: 37639366 [No Abstract] [Full Text] [Related] [Next] [New Search]