These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 8946578)
1. Effect of haemoglobin oxygenation on Bohr proton release and CO2 excretion in the rainbow trout. Brauner CJ; Gilmour KM; Perry SF Respir Physiol; 1996 Oct; 106(1):65-70. PubMed ID: 8946578 [TBL] [Abstract][Full Text] [Related]
2. The interaction between O2 and CO2 exchange in rainbow trout during graded sustained exercise. Brauner CJ; Thorarensen H; Gallaugher P; Farrell AP; Randall DJ Respir Physiol; 2000 Jan; 119(1):83-96. PubMed ID: 10701710 [TBL] [Abstract][Full Text] [Related]
3. The interaction between O2 and CO2 movements during aerobic exercise in fish. Brauner CJ Braz J Med Biol Res; 1995; 28(11-12):1185-9. PubMed ID: 8728846 [TBL] [Abstract][Full Text] [Related]
4. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Jensen FB Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402 [TBL] [Abstract][Full Text] [Related]
5. Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates. Rummer JL; Brauner CJ PLoS One; 2015; 10(10):e0139477. PubMed ID: 26436414 [TBL] [Abstract][Full Text] [Related]
6. CO2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise. Brauner CJ; Thorarensen H; Gallaugher P; Farrell AP; Randall DJ Respir Physiol; 2000 Jan; 119(1):69-82. PubMed ID: 10701709 [TBL] [Abstract][Full Text] [Related]
7. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity. Desforges PR; Gilmour KM; Perry SF J Comp Physiol B; 2001 Aug; 171(6):465-73. PubMed ID: 11585258 [TBL] [Abstract][Full Text] [Related]
8. Soluble adenylyl cyclase is an acid-base sensor in rainbow trout red blood cells that regulates intracellular pH and haemoglobin-oxygen binding. Harter TS; Smith EA; Salmerón C; Thies AB; Delgado B; Wilson RW; Tresguerres M Acta Physiol (Oxf); 2024 Oct; 240(10):e14205. PubMed ID: 39031444 [TBL] [Abstract][Full Text] [Related]
9. Catecholamine-induced changes in oxygen affinity of carp and trout blood. Holk K; Lykkeboe G Respir Physiol; 1995 Apr; 100(1):55-62. PubMed ID: 7604184 [TBL] [Abstract][Full Text] [Related]
10. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss. Harter TS; May AG; Federspiel WJ; Supuran CT; Brauner CJ Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R397-R407. PubMed ID: 29641235 [TBL] [Abstract][Full Text] [Related]
11. The Bohr effect of the blood in rainbow trout (Salmo gairdnerii). A comparative study with human blood, using precise oxygen equilibrium curves and the Adair model. Vorger P Comp Biochem Physiol A Comp Physiol; 1985; 82(4):915-24. PubMed ID: 14577414 [TBL] [Abstract][Full Text] [Related]
12. Numerical values of the classical Haldane coefficient. Grønlund J; Garby L J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):850-9. PubMed ID: 6092313 [TBL] [Abstract][Full Text] [Related]
13. Fixed acid and carbon dioxide Bohr effects as functions of hemoglobin-oxygen saturation and erythrocyte pH in the blood of the frog, Rana temporaria. Wells RM; Weber RE Pflugers Arch; 1985 Jan; 403(1):7-12. PubMed ID: 3920641 [TBL] [Abstract][Full Text] [Related]
14. Responses of the red blood cells from two high-energy-demand teleosts, yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), to catecholamines. Lowe TE; Brill RW; Cousins KL J Comp Physiol B; 1998 Aug; 168(6):405-18. PubMed ID: 9747521 [TBL] [Abstract][Full Text] [Related]
15. Oxygen equilibria of cathodic eel hemoglobin analysed in terms of the MWC model and Adair's successive oxygenation theory. Feuerlein RJ; Weber RE J Comp Physiol B; 1996; 165(8):597-606. PubMed ID: 8882506 [TBL] [Abstract][Full Text] [Related]
16. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia. Ueda Y; Bookchin RM J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043 [TBL] [Abstract][Full Text] [Related]
17. Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Rummer JL; McKenzie DJ; Innocenti A; Supuran CT; Brauner CJ Science; 2013 Jun; 340(6138):1327-9. PubMed ID: 23766325 [TBL] [Abstract][Full Text] [Related]
18. Adrenergic inhibition of carbon dioxide excretion by trout red blood cells in vitro is mediated by activation of Na+/H+ exchange. Perry SF; Wood CM; Thomas S; Walsh PJ J Exp Biol; 1991 May; 157():367-80. PubMed ID: 1648121 [TBL] [Abstract][Full Text] [Related]
19. O(2)-dependent K(+) fluxes in trout red blood cells: the nature of O(2) sensing revealed by the O(2) affinity, cooperativity and pH dependence of transport. Berenbrink M; Völkel S; Heisler N; Nikinmaa M J Physiol; 2000 Jul; 526 Pt 1(Pt 1):69-80. PubMed ID: 10878100 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-linked CO2 transport in sheep blood. Bauman R; Bauer C; Haller EA Am J Physiol; 1975 Aug; 229(2):334-9. PubMed ID: 240281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]