BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 8947033)

  • 1. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
    Hayer-Hartl MK; Martin J; Hartl FU
    Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding.
    Martin J; Mayhew M; Langer T; Hartl FU
    Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL.
    Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL
    Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-triggered ADP release from the asymmetric chaperonin GroEL/GroES/ADP7 is not the rate-limiting step of the GroEL/GroES reaction cycle.
    Tyagi NK; Fenton WA; Horwich AL
    FEBS Lett; 2010 Mar; 584(5):951-3. PubMed ID: 20083109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings.
    Rye HS; Roseman AM; Chen S; Furtak K; Fenton WA; Saibil HR; Horwich AL
    Cell; 1999 Apr; 97(3):325-38. PubMed ID: 10319813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP.
    Motojima F; Yoshida M
    J Biol Chem; 2003 Jul; 278(29):26648-54. PubMed ID: 12736270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
    Behlke J; Ristau O; Schönfeld HJ
    Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings.
    Kad NM; Ranson NA; Cliff MJ; Clarke AR
    J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GroEL/GroES-mediated folding of a protein too large to be encapsulated.
    Chaudhuri TK; Farr GW; Fenton WA; Rospert S; Horwich AL
    Cell; 2001 Oct; 107(2):235-46. PubMed ID: 11672530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.