These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
681 related articles for article (PubMed ID: 8947033)
1. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK; Weber F; Hartl FU EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033 [TBL] [Abstract][Full Text] [Related]
2. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Hayer-Hartl MK; Martin J; Hartl FU Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602 [TBL] [Abstract][Full Text] [Related]
4. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Martin J; Mayhew M; Langer T; Hartl FU Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770 [TBL] [Abstract][Full Text] [Related]
5. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye HS; Burston SG; Fenton WA; Beechem JM; Xu Z; Sigler PB; Horwich AL Nature; 1997 Aug; 388(6644):792-8. PubMed ID: 9285593 [TBL] [Abstract][Full Text] [Related]
6. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides. Gorovits BM; Ybarra J; Seale JW; Horowitz PM J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138 [TBL] [Abstract][Full Text] [Related]
7. ATP-triggered ADP release from the asymmetric chaperonin GroEL/GroES/ADP7 is not the rate-limiting step of the GroEL/GroES reaction cycle. Tyagi NK; Fenton WA; Horwich AL FEBS Lett; 2010 Mar; 584(5):951-3. PubMed ID: 20083109 [TBL] [Abstract][Full Text] [Related]
8. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
9. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Rye HS; Roseman AM; Chen S; Furtak K; Fenton WA; Saibil HR; Horwich AL Cell; 1999 Apr; 97(3):325-38. PubMed ID: 10319813 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP. Motojima F; Yoshida M J Biol Chem; 2003 Jul; 278(29):26648-54. PubMed ID: 12736270 [TBL] [Abstract][Full Text] [Related]
11. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228 [TBL] [Abstract][Full Text] [Related]
12. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Mendoza JA; Dulin P; Warren T Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Behlke J; Ristau O; Schönfeld HJ Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876 [TBL] [Abstract][Full Text] [Related]
14. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Motojima F; Yoshida M Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470 [TBL] [Abstract][Full Text] [Related]
15. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. Smith KE; Fisher MT J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149 [TBL] [Abstract][Full Text] [Related]
17. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Kad NM; Ranson NA; Cliff MJ; Clarke AR J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049 [TBL] [Abstract][Full Text] [Related]
18. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related]
19. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Chaudhuri TK; Farr GW; Fenton WA; Rospert S; Horwich AL Cell; 2001 Oct; 107(2):235-46. PubMed ID: 11672530 [TBL] [Abstract][Full Text] [Related]
20. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]