These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 8947044)
1. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. Elling CE; Schwartz TW EMBO J; 1996 Nov; 15(22):6213-9. PubMed ID: 8947044 [TBL] [Abstract][Full Text] [Related]
2. Refinement of a homology model of the mu-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Fowler CB; Pogozheva ID; LeVine H; Mosberg HI Biochemistry; 2004 Jul; 43(27):8700-10. PubMed ID: 15236578 [TBL] [Abstract][Full Text] [Related]
3. Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor. Holst B; Elling CE; Schwartz TW Mol Pharmacol; 2000 Aug; 58(2):263-70. PubMed ID: 10908293 [TBL] [Abstract][Full Text] [Related]
5. Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Holst B; Lang M; Brandt E; Bach A; Howard A; Frimurer TM; Beck-Sickinger A; Schwartz TW Mol Pharmacol; 2006 Sep; 70(3):936-46. PubMed ID: 16798937 [TBL] [Abstract][Full Text] [Related]
6. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Elling CE; Nielsen SM; Schwartz TW Nature; 1995 Mar; 374(6517):74-7. PubMed ID: 7532789 [TBL] [Abstract][Full Text] [Related]
7. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V. Rosenkilde MM; David R; Oerlecke I; Benned-Jensen T; Geumann U; Beck-Sickinger AG; Schwartz TW Mol Pharmacol; 2006 Dec; 70(6):1892-901. PubMed ID: 16971553 [TBL] [Abstract][Full Text] [Related]
8. Activation of the CXCR3 chemokine receptor through anchoring of a small molecule chelator ligand between TM-III, -IV, and -VI. Rosenkilde MM; Andersen MB; Nygaard R; Frimurer TM; Schwartz TW Mol Pharmacol; 2007 Mar; 71(3):930-41. PubMed ID: 17170198 [TBL] [Abstract][Full Text] [Related]
9. Binding sites and transduction process of the cholecystokininB receptor: involvement of highly conserved aromatic residues of the transmembrane domains evidenced by site-directed mutagenesis. Jagerschmidt A; Guillaume N; Roques BP; Noble F Mol Pharmacol; 1998 May; 53(5):878-85. PubMed ID: 9584214 [TBL] [Abstract][Full Text] [Related]
10. A refined model of the thyrotropin-releasing hormone (TRH) receptor binding pocket. Experimental analysis and energy minimization of the complex between TRH and TRH receptor. Perlman JH; Laakkonen LJ; Guarnieri F; Osman R; Gershengorn MC Biochemistry; 1996 Jun; 35(24):7643-50. PubMed ID: 8672465 [TBL] [Abstract][Full Text] [Related]
11. Complex of an active mu-opioid receptor with a cyclic peptide agonist modeled from experimental constraints. Fowler CB; Pogozheva ID; Lomize AL; LeVine H; Mosberg HI Biochemistry; 2004 Dec; 43(50):15796-810. PubMed ID: 15595835 [TBL] [Abstract][Full Text] [Related]
12. Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1). Guerrerio AL; Berg JM Biochemistry; 2004 May; 43(18):5437-44. PubMed ID: 15122909 [TBL] [Abstract][Full Text] [Related]
13. Mutations along transmembrane segment II of the NK-1 receptor affect substance P competition with non-peptide antagonists but not substance P binding. Rosenkilde MM; Cahir M; Gether U; Hjorth SA; Schwartz TW J Biol Chem; 1994 Nov; 269(45):28160-4. PubMed ID: 7525569 [TBL] [Abstract][Full Text] [Related]
14. Extracellular domains of the neurokinin-1 receptor: structural characterization and interactions with substance P. Ulfers AL; Piserchio A; Mierke DF Biopolymers; 2002; 66(5):339-49. PubMed ID: 12539262 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the interaction of diacylpiperazine antagonists with the human neurokinin-1 receptor: identification of a common binding site for structurally dissimilar antagonists. Cascieri MA; Shiao LL; Mills SG; MacCoss M; Swain CJ; Yu H; Ber E; Sadowski S; Wu MT; Strader CD Mol Pharmacol; 1995 Apr; 47(4):660-5. PubMed ID: 7536886 [TBL] [Abstract][Full Text] [Related]
16. Structural probing of a microdomain in the dopamine transporter by engineering of artificial Zn2+ binding sites. Norregaard L; Visiers I; Loland CJ; Ballesteros J; Weinstein H; Gether U Biochemistry; 2000 Dec; 39(51):15836-46. PubMed ID: 11123909 [TBL] [Abstract][Full Text] [Related]
17. Localization of the ligand binding site of the neurokinin-1 receptor: interpretation of chimeric mutations and single-residue substitutions. Huang RR; Yu H; Strader CD; Fong TM Mol Pharmacol; 1994 Apr; 45(4):690-5. PubMed ID: 8183248 [TBL] [Abstract][Full Text] [Related]
18. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter. Olsowski A; Monden I; Keller K Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964 [TBL] [Abstract][Full Text] [Related]
19. Specific residues at the top of transmembrane segment V and VI of the neurokinin-1 receptor involved in binding of the nonpeptide antagonist CP 96,345 [corrected]. Gether U; Nilsson L; Lowe JA; Schwartz TW J Biol Chem; 1994 Sep; 269(39):23959-64. PubMed ID: 7929043 [TBL] [Abstract][Full Text] [Related]
20. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide. Ciucci A; Palma C; Manzini S; Werge TM Br J Pharmacol; 1998 Sep; 125(2):393-401. PubMed ID: 9786514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]