BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8947838)

  • 1. Characterization of rat monoamine oxidase A with noncovalently-bound FAD expressed in yeast cells.
    Hiro I; Tsugeno Y; Hirashiki I; Ogata F; Ito A
    J Biochem; 1996 Oct; 120(4):759-65. PubMed ID: 8947838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of serotonin oxidation as a component of the altered substrate specificity in the Y444F mutant of recombinant human liver MAO A.
    Nandigama RK; Miller JR; Edmondson DE
    Biochemistry; 2001 Dec; 40(49):14839-46. PubMed ID: 11732903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytically active monoamine oxidase type A from human liver expressed in Saccharomyces cerevisiae contains covalent FAD.
    Weyler W; Titlow CC; Salach JI
    Biochem Biophys Res Commun; 1990 Dec; 173(3):1205-11. PubMed ID: 2125217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat monoamine oxidase B expressed in Escherichia coli has a covalently-bound FAD.
    Hirashiki I; Ogata F; Ito A
    Biochem Mol Biol Int; 1995 Sep; 37(1):39-44. PubMed ID: 8653086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine residues near the FAD binding site are critical for FAD binding and for the maintenance of the stable and active conformation of rat monoamine oxidase A.
    Ma J; Ito A
    J Biochem; 2002 Jan; 131(1):107-11. PubMed ID: 11754741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FAD binding sites of human liver monoamine oxidases A and B: investigation of the role of flavin ribityl side chain hydroxyl groups in the covalent flavinylation reaction and catalytic activities.
    Miller JR; Guan N; Hubalek F; Edmondson DE
    Biochim Biophys Acta; 2000 Jan; 1476(1):27-32. PubMed ID: 10606764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of FAD structure on its binding and activity with the C406A mutant of recombinant human liver monoamine oxidase A.
    Nandigama RK; Edmondson DE
    J Biol Chem; 2000 Jul; 275(27):20527-32. PubMed ID: 10877844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of surface cysteine 374 to alanine in monoamine oxidase A alters substrate turnover and inactivation by cyclopropylamines.
    Vintém AP; Price NT; Silverman RB; Ramsay RR
    Bioorg Med Chem; 2005 May; 13(10):3487-95. PubMed ID: 15848762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavinylation of monoamine oxidase B.
    Zhou BP; Lewis DA; Kwan SW; Abell CW
    J Biol Chem; 1995 Oct; 270(40):23653-60. PubMed ID: 7559533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of the multiple coenzymes and subunits and role of the covalent flavin link in the complex heterotetrameric sarcosine oxidase.
    Eschenbrenner M; Chlumsky LJ; Khanna P; Strasser F; Jorns MS
    Biochemistry; 2001 May; 40(18):5352-67. PubMed ID: 11330998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines.
    Wu HF; Chen K; Shih JC
    Mol Pharmacol; 1993 Jun; 43(6):888-93. PubMed ID: 8316221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level expression of human liver monoamine oxidase A in Pichia pastoris: comparison with the enzyme expressed in Saccharomyces cerevisiae.
    Li M; Hubálek F; Newton-Vinson P; Edmondson DE
    Protein Expr Purif; 2002 Feb; 24(1):152-62. PubMed ID: 11812236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP; Wu B; Kwan SW; Abell CW
    J Biol Chem; 1998 Jun; 273(24):14862-8. PubMed ID: 9614088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrometric evidence for the flavin-1-phenylcyclopropylamine inactivator adduct with monoamine oxidase N.
    Mitchell DJ; Nikolic D; Rivera E; Sablin SO; Choi S; van Breemen RB; Singer TP; Silverman RB
    Biochemistry; 2001 May; 40(18):5447-56. PubMed ID: 11331009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the structure of the active site of monoamine oxidase-B by affinity labeling with the selective inhibitor lazabemide and by site-directed mutagenesis.
    Cesura AM; Gottowik J; Lahm HW; Lang G; Imhof R; Malherbe P; Röthlisberger U; Da Prada M
    Eur J Biochem; 1996 Mar; 236(3):996-1002. PubMed ID: 8665924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design of an alternative, covalently flavinylated 6-hydroxy-D-nicotine oxidase by replacing the FAD-binding histidine by cysteine and reconstitution of the holoenzyme with 8-(methylsulfonyl)FAD.
    Stoltz M; Henninger HP; Brandsch R
    FEBS Lett; 1996 May; 386(2-3):194-6. PubMed ID: 8647280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of wild-type and mutant forms of human monoamine oxidase A and B expressed in a mammalian cell line.
    Gottowik J; Cesura AM; Malherbe P; Lang G; Da Prada M
    FEBS Lett; 1993 Feb; 317(1-2):152-6. PubMed ID: 8428624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.