These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8948151)

  • 1. Three-dimensional finite element computer model of the forward problem of electrocardiology.
    Cábelka S; Kittnar O; Novotný J; Marsík F; Slavícek J
    Bratisl Lek Listy; 1996 Sep; 97(9):550-2. PubMed ID: 8948151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study.
    Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S
    Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity.
    Geneser SE; Kirby RM; MacLeod RS
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific identification of optimal ubiquitous electrocardiogram (U-ECG) placement using a three-dimensional model of cardiac electrophysiology.
    Lim KM; Jeon JW; Gyeong MS; Hong SB; Ko BH; Bae SK; Shin KS; Shim EB
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):245-9. PubMed ID: 22893363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for incorporating weighted temporal and spatial smoothing in the inverse problem of electrocardiography.
    Throne RD; Olson LG; Windle JR
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1054-9. PubMed ID: 12214879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oblique dipole layer potentials applied to electrocardiology.
    Colli-Franzone P; Guerri L; Viganotti C
    J Math Biol; 1983; 17(1):93-124. PubMed ID: 6875409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The uniform double layer model and myocardial infarction: forward solution consideration.
    Tinová M; Huiskamp GJ; Turzová M; Tysler M
    Bratisl Lek Listy; 1996 Sep; 97(9):558-61. PubMed ID: 8948153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual custom-designed modelling for the finite element method to be used in the forward calculation of a body surface isopotential map.
    Oguri KK; Iwata A; Suzumura N; Okajima M; Doniwa K; Ohta K
    Front Med Biol Eng; 1991; 3(4):259-68. PubMed ID: 1799560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution strategies for the finite-element-based solution of the ECG inverse problem.
    Wang D; Kirby RM; Johnson CR
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):220-37. PubMed ID: 19535314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transfer matrix for epicardial potential in a piece-wise homogeneous thorax model: the boundary element formulation.
    Stenroos M
    Phys Med Biol; 2009 Sep; 54(18):5443-55. PubMed ID: 19700818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of torso impedance on epicardial and body surface potentials: a modeling study.
    Buist ML; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biophysical models of the heart electrical activity].
    Baum OV; Voloshin VI; Popov LA
    Biofizika; 2006; 51(6):1069-86. PubMed ID: 17175918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.
    Huang CH; Lin CC; Ju MS
    Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: part I.
    Guven M; Reilly-Raska L; Zhou L; Yazici B
    IEEE Trans Med Imaging; 2010 Feb; 29(2):217-29. PubMed ID: 20129842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.