These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8948520)

  • 1. Use of phosphonoformic acid to induce phosphaturia in chronic renal failure in rats.
    Loghman-Adham M; Motock GT
    Ren Fail; 1996 Nov; 18(6):855-66. PubMed ID: 8948520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonoformic acid blunts adaptive response of renal and intestinal Pi transport.
    Loghman-Adham M; Levi M; Scherer SA; Motock GT; Totzke MT
    Am J Physiol; 1993 Dec; 265(6 Pt 2):F756-63. PubMed ID: 8285208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate transport in brush border membranes from uremic rats. Response to phosphonoformic acid.
    Loghman-Adham M; Szczepanska-Konkel M; Dousa TP
    J Am Soc Nephrol; 1992 Dec; 3(6):1253-9. PubMed ID: 1477321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of phosphaturia elicited by administration of phosphonoformate in vivo.
    VanScoy M; Loghman-Adham M; Onsgard M; Szczepanska-Konkel M; Homma S; Knox FG; Dousa TP
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F984-94. PubMed ID: 2847555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bioavailability of phosphonoformic acid by dietary phosphorus restriction.
    Loghman-Adham M; Motock GT; Levi M
    Biochem Pharmacol; 1994 Oct; 48(7):1455-8. PubMed ID: 7945445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate excretion and phosphate transporter messenger RNA in uremic rats treated with phosphonoformic acid.
    Brooks DP; Ali SM; Contino LC; Stack E; Fredrickson TA; Feild J; Edwards RM
    J Pharmacol Exp Ther; 1997 Jun; 281(3):1440-5. PubMed ID: 9190881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport.
    Loghman-Adham M
    Gen Pharmacol; 1996 Mar; 27(2):305-12. PubMed ID: 8919647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms of adaptive increase in Na+-Pi cotransport across renal brush-border membrane.
    Yusufi AN; Szczepanska-Konkel M; Hoppe A; Dousa TP
    Am J Physiol; 1989 May; 256(5 Pt 2):F852-61. PubMed ID: 2524168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 2'-phosphophloretin on renal function in chronic renal failure rats.
    Peerce BE; Weaver L; Clarke RD
    Am J Physiol Renal Physiol; 2004 Jul; 287(1):F48-56. PubMed ID: 14761861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual action of phosphonoformic acid on Na(+)-phosphate cotransport in opossum kidney cells.
    Loghman-Adham M; Dousa TP
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F301-10. PubMed ID: 1380774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG; Thompson MA; Bolliger C; Tyce GM; Dousa TP
    Kidney Int; 1999 May; 55(5):1832-42. PubMed ID: 10231445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N; Tenenhouse HS
    J Bone Miner Res; 1992 May; 7(5):563-71. PubMed ID: 1319668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone.
    Tenenhouse HS; Lee J; Harvey N
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F420-6. PubMed ID: 1832265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids.
    Loghman-Adham M; Szczepanska-Konkel M; Yusufi AN; Van Scoy M; Dousa TP
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G244-9. PubMed ID: 2950771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sevelamer hydrochloride, a phosphate binder, protects against deterioration of renal function in rats with progressive chronic renal insufficiency.
    Nagano N; Miyata S; Obana S; Kobayashi N; Fukushima N; Burke SK; Wada M
    Nephrol Dial Transplant; 2003 Oct; 18(10):2014-23. PubMed ID: 13679475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phosphonoformic acid and renagel on renal type IIa sodium-dependent phosphate cotransporter mRNA expression in hyperphosphatemia rats.
    Zeng M; Wang X; Wang X; Zhao X
    Ren Fail; 2012; 34(3):358-63. PubMed ID: 22260362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of efficient phosphate binding on bone in chronic renal failure rats.
    Behets GJ; Gritters M; Dams G; De Broe ME; D'Haese PC
    Ren Fail; 2005; 27(4):475-84. PubMed ID: 16060138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats.
    Fernandes I; Laouari D; Tutt P; Hampson G; Friedlander G; Silve C
    Kidney Int; 2001 Jan; 59(1):210-21. PubMed ID: 11135073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral carbonaceous absorbent modifies renal function of renal ablation model without affecting plasma renin-angiotensin system or protein intake.
    Horike K; Usami T; Kamiya Y; Kamiya T; Yoshida A; Itoh S; Yamato H; Ise M; Kimura G
    Clin Exp Nephrol; 2003 Jun; 7(2):120-4. PubMed ID: 14586730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.