These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 8948578)
1. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs. Snow P; Yim DL; Leibow JD; Saini S; Nuccitelli R Dev Biol; 1996 Nov; 180(1):108-18. PubMed ID: 8948578 [TBL] [Abstract][Full Text] [Related]
2. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Nuccitelli R; Yim DL; Smart T Dev Biol; 1993 Jul; 158(1):200-12. PubMed ID: 7687224 [TBL] [Abstract][Full Text] [Related]
3. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Wagner J; Fall CP; Hong F; Sims CE; Allbritton NL; Fontanilla RA; Moraru II; Loew LM; Nuccitelli R Cell Calcium; 2004 May; 35(5):433-47. PubMed ID: 15003853 [TBL] [Abstract][Full Text] [Related]
4. Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin. Stith BJ; Espinoza R; Roberts D; Smart T Dev Biol; 1994 Sep; 165(1):206-15. PubMed ID: 8088439 [TBL] [Abstract][Full Text] [Related]
5. The two intracellular Ca2+ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians. Albrieux M; Sardet C; Villaz M Dev Biol; 1997 Sep; 189(2):174-85. PubMed ID: 9299112 [TBL] [Abstract][Full Text] [Related]
6. Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis. Larabell C; Nuccitelli R Dev Biol; 1992 Oct; 153(2):347-55. PubMed ID: 1327924 [TBL] [Abstract][Full Text] [Related]
7. A PKC wave follows the calcium wave after activation of Xenopus eggs. Larabell CA; Rowning BA; Moon RT Differentiation; 2004 Feb; 72(1):41-7. PubMed ID: 15008825 [TBL] [Abstract][Full Text] [Related]
8. Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres. Han JK; Fukami K; Nuccitelli R J Cell Biol; 1992 Jan; 116(1):147-56. PubMed ID: 1309810 [TBL] [Abstract][Full Text] [Related]
9. Cortically restricted production of IP3 leads to propagation of the fertilization Ca2+ wave along the cell surface in a model of the Xenopus egg. Fall CP; Wagner JM; Loew LM; Nuccitelli R J Theor Biol; 2004 Dec; 231(4):487-96. PubMed ID: 15488526 [TBL] [Abstract][Full Text] [Related]
10. Reducing PIP2 hydrolysis, Ins(1,4,5)P3 receptor availability, or calcium gradients inhibits progesterone-stimulated Xenopus oocyte maturation. Han JK; Lee SK Biochem Biophys Res Commun; 1995 Dec; 217(3):931-9. PubMed ID: 8554618 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal characteristics and mechanisms of intracellular Ca(2+) increases at fertilization in eggs of jellyfish (Phylum Cnidaria, Class Hydrozoa). Deguchi R; Kondoh E; Itoh J Dev Biol; 2005 Mar; 279(2):291-307. PubMed ID: 15733659 [TBL] [Abstract][Full Text] [Related]
12. Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes. Fujiwara T; Nakada K; Shirakawa H; Miyazaki S Dev Biol; 1993 Mar; 156(1):69-79. PubMed ID: 8383620 [TBL] [Abstract][Full Text] [Related]
13. Oscillation of inositol polyphosphates in the embryonic cleavage cycle of the Xenopus laevis. Han JK Biochem Biophys Res Commun; 1995 Jan; 206(2):775-80. PubMed ID: 7826399 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal analysis of Ca(2+) waves in relation to the sperm entry site and animal-vegetal axis during Ca(2+) oscillations in fertilized mouse eggs. Deguchi R; Shirakawa H; Oda S; Mohri T; Miyazaki S Dev Biol; 2000 Feb; 218(2):299-313. PubMed ID: 10656771 [TBL] [Abstract][Full Text] [Related]
15. Sperm-induced Ca(2+) oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1, 4,5-trisphosphate during mammalian fertilization. Jones KT; Nixon VL Dev Biol; 2000 Sep; 225(1):1-12. PubMed ID: 10964460 [TBL] [Abstract][Full Text] [Related]
16. Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. Han JK; Nuccitelli R J Cell Biol; 1990 Apr; 110(4):1103-10. PubMed ID: 2324195 [TBL] [Abstract][Full Text] [Related]
17. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate. Lee SJ; Shen SS Dev Biol; 1998 Jan; 193(2):195-208. PubMed ID: 9473324 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy. Fontanilla RA; Nuccitelli R Biophys J; 1998 Oct; 75(4):2079-87. PubMed ID: 9746550 [TBL] [Abstract][Full Text] [Related]
19. Second messengers at fertilization in sea-urchin eggs. Swann K; Whitaker MJ J Reprod Fertil Suppl; 1990; 42():141-53. PubMed ID: 1963898 [TBL] [Abstract][Full Text] [Related]
20. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis. Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]