BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8948592)

  • 21. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of multiple cadherins and catenins in the chick optic tectum.
    Miskevich F; Zhu Y; Ranscht B; Sanes JR
    Mol Cell Neurosci; 1998 Nov; 12(4-5):240-55. PubMed ID: 9828089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders.
    Harris WA
    J Comp Neurol; 1980 Nov; 194(2):303-17. PubMed ID: 7440803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The multiple decisions made by growth cones of RGCs as they navigate from the retina to the tectum in Xenopus embryos.
    Dingwell KS; Holt CE; Harris WA
    J Neurobiol; 2000 Aug; 44(2):246-59. PubMed ID: 10934326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye.
    Straznicky C; Tay D
    J Embryol Exp Morphol; 1981 Feb; 61():259-76. PubMed ID: 7264545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-cadherin and β1-integrins cooperate during the development of the enteric nervous system.
    Broders-Bondon F; Paul-Gilloteaux P; Carlier C; Radice GL; Dufour S
    Dev Biol; 2012 Apr; 364(2):178-91. PubMed ID: 22342243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The visuotectal projections made by Xenopus 'pie slice' compound eyes.
    Willshaw DJ; Fawcett JW; Gaze RM
    J Embryol Exp Morphol; 1983 Apr; 74():29-45. PubMed ID: 6886599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus.
    Straznicky C; Tay D
    J Embryol Exp Morphol; 1981 Dec; 66():159-74. PubMed ID: 7338709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retina development in zebrafish requires the heparan sulfate proteoglycan agrin.
    Liu IH; Zhang C; Kim MJ; Cole GJ
    Dev Neurobiol; 2008 Jun; 68(7):877-98. PubMed ID: 18327763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Axonal guidance from retina to tectum in embryonic Xenopus.
    Chien CB; Harris WA
    Curr Top Dev Biol; 1994; 29():135-69. PubMed ID: 7828437
    [No Abstract]   [Full Text] [Related]  

  • 31. Retinotectal ligands for the receptor tyrosine phosphatase CRYPalpha.
    Haj F; McKinnell I; Stoker A
    Mol Cell Neurosci; 1999 Sep; 14(3):225-40. PubMed ID: 10493824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of the retinotectal projections from compound eyes in Xenopus.
    Straznicky C; Gaze RM; Keating MJ
    J Embryol Exp Morphol; 1981 Apr; 62():13-35. PubMed ID: 7276807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homing behaviour of axons in the embryonic vertebrate brain.
    Harris WA
    Nature; 1986 Mar 20-26; 320(6059):266-9. PubMed ID: 3960107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation.
    Hoskins SG
    J Neurobiol; 1986 May; 17(3):203-29. PubMed ID: 3519864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations in the Xenopus retinotectal projection by antibodies to Xenopus N-CAM.
    Fraser SE; Carhart MS; Murray BA; Chuong CM; Edelman GM
    Dev Biol; 1988 Sep; 129(1):217-30. PubMed ID: 3044878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.
    Stuermer CA; Rohrer B; Münz H
    J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish mutations affecting retinotectal axon pathfinding.
    Karlstrom RO; Trowe T; Klostermann S; Baier H; Brand M; Crawford AD; Grunewald B; Haffter P; Hoffmann H; Meyer SU; Müller BK; Richter S; van Eeden FJ; Nüsslein-Volhard C; Bonhoeffer F
    Development; 1996 Dec; 123():427-38. PubMed ID: 9007260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain.
    Plachez C; Andrews W; Liapi A; Knoell B; Drescher U; Mankoo B; Zhe L; Mambetisaeva E; Annan A; Bannister L; Parnavelas JG; Richards LJ; Sundaresan V
    Mol Cell Neurosci; 2008 Apr; 37(4):719-30. PubMed ID: 18272390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro studies of growth cone behavior support a role for fasciculation mediated by cell adhesion molecules in sensory axon guidance during development.
    Honig MG; Petersen GG; Rutishauser US; Camilli SJ
    Dev Biol; 1998 Dec; 204(2):317-26. PubMed ID: 9882473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.