These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8948613)

  • 1. Contraction patterns of intrinsic laryngeal muscles induced by orderly recruitment in the canine.
    Broniatowski M; Vito KJ; Shah B; Shields RW; Secic M; Dessoffy R; Strome M
    Laryngoscope; 1996 Dec; 106(12 Pt 1):1510-5. PubMed ID: 8948613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial control of glottic adduction for aspiration by orderly recruitment in the canine.
    Broniatowski M; Vito KJ; Shah B; Shields RW; Strome M
    Dysphagia; 1997; 12(2):93-7. PubMed ID: 9071810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic analysis of intrinsic laryngeal muscles in canine sound production.
    Broniatowski M; Grundfest-Broniatowski S; Nelson DR; Dessoffy R; Shields RW; Strome M
    Ann Otol Rhinol Laryngol; 2002 Jun; 111(6):542-52. PubMed ID: 12090711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial voice modulation in dogs by recurrent laryngeal nerve stimulation: electrophysiological confirmation of anatomic data.
    Broniatowski M; Grundfest-Broniatowski S; Tucker HM; Tyler DJ
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):145-55. PubMed ID: 17388239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vagal stimulation for reciprocal coupling between glottic and upper esophageal sphincter activities in the canine.
    Broniatowski M; Dessoffy R; Shields RW; Strome M
    Dysphagia; 1999; 14(4):196-203. PubMed ID: 10467044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrophysiological evidence of axon branching in the laryngeal recurrent motor nerve (author's transl)].
    Gauthier P; Barillot JC; Dussardier M
    J Physiol (Paris); 1980; 76(1):39-48. PubMed ID: 7411474
    [No Abstract]   [Full Text] [Related]  

  • 7. Spontaneous and evoked laryngeal electromyography of the thyroarytenoid muscles: a canine model for intraoperative recurrent laryngeal nerve monitoring.
    Scott AR; Chong PS; Hartnick CJ; Randolph GW
    Ann Otol Rhinol Laryngol; 2010 Jan; 119(1):54-63. PubMed ID: 20128189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of recurrent laryngeal nerve transection and vagotomy on respiratory contraction of the cricothyroid muscle.
    Woodson GE
    Ann Otol Rhinol Laryngol; 1989 May; 98(5 Pt 1):373-8. PubMed ID: 2719455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of recurrent laryngeal nerve compound action potential to laryngeal biomechanics.
    Nasri S; Dulguerov P; Damrose EJ; Ye M; Kreiman J; Berke GS
    Laryngoscope; 1995 Jun; 105(6):639-43. PubMed ID: 7769950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic evaluation of conduction time and velocity of the recurrent laryngeal nerves of clinically normal dogs.
    Steiss JE; Marshall AE
    Am J Vet Res; 1988 Sep; 49(9):1533-6. PubMed ID: 3223662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked muscular potentials in laryngeal muscles.
    Dejonckere PH; Knoops P; Lebacq J
    Acta Otorhinolaryngol Belg; 1988; 42(4):494-501. PubMed ID: 3218498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective intraoperative stimulation of the human larynx.
    Broniatowski M; Grundfest-Broniatowski S; Hahn EC; Hadley AJ; Tyler DJ; Tucker HM
    Laryngoscope; 2012 Sep; 122(9):2015-22. PubMed ID: 22886746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective stimulation of human intrinsic laryngeal muscles: Analysis in a mathematical three-dimensional space.
    Broniatowski M; Grundfest-Broniatowski S; Schiefer M; Ludlow DH; Broniatowski DA; Tucker HM
    Laryngoscope; 2020 Apr; 130(4):967-973. PubMed ID: 31334850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus ambiguus motoneurons innervating the canine intrinsic laryngeal muscles by the fluorescent labeling technique.
    Hisa Y; Sato F; Fukui K; Ibata Y; Mizuokoshi O
    Exp Neurol; 1984 May; 84(2):441-9. PubMed ID: 6714352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of myosin heavy chain mRNA in rat laryngeal muscles.
    Jung HH; Han SH; Choi JO
    Acta Otolaryngol; 1999; 119(3):396-402. PubMed ID: 10380749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New animal model for assessment of functional laryngeal motor innervation.
    Björck G; Margolin G; Måbäck GM; Persson JK; Mattsson P; Hydman J
    Ann Otol Rhinol Laryngol; 2012 Oct; 121(10):695-9. PubMed ID: 23130547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetry of the laryngeal reflex responses to superior laryngeal nerve stimulation unrelated to the length of the recurrent nerves in the porcine model.
    Roubeau B; Lefaucheur JP; Moine A; Lacau St Guily J
    Acta Otolaryngol; 1998 Nov; 118(6):882-6. PubMed ID: 9870638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A re-appraisal of intrinsic laryngeal muscle action.
    Sellars IE
    J Otolaryngol; 1978 Oct; 7(5):450-6. PubMed ID: 739577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implantable system for In Vivo chronic electromyographic study in the larynx.
    Li Y; Huang S; Zealear D
    Muscle Nerve; 2017 May; 55(5):706-714. PubMed ID: 27543847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laryngeal influences on breathing pattern and posterior cricoarytenoid muscle activity.
    Sant'Ambrogio FB; Mathew OP; Clark WD; Sant'Ambrogio G
    J Appl Physiol (1985); 1985 Apr; 58(4):1298-304. PubMed ID: 3988683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.