These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 8950152)
1. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Jordan A; Wust P; Scholz R; Tesche B; Fähling H; Mitrovics T; Vogl T; Cervós-Navarro J; Felix R Int J Hyperthermia; 1996; 12(6):705-22. PubMed ID: 8950152 [TBL] [Abstract][Full Text] [Related]
2. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741 [TBL] [Abstract][Full Text] [Related]
3. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026 [TBL] [Abstract][Full Text] [Related]
4. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
5. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108 [TBL] [Abstract][Full Text] [Related]
6. Focused RF hyperthermia using magnetic fluids. Tasci TO; Vargel I; Arat A; Guzel E; Korkusuz P; Atalar E Med Phys; 2009 May; 36(5):1906-12. PubMed ID: 19544810 [TBL] [Abstract][Full Text] [Related]
7. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia. Umut E; Coşkun M; Pineider F; Berti D; Güngüneş H J Colloid Interface Sci; 2019 Aug; 550():199-209. PubMed ID: 31075674 [TBL] [Abstract][Full Text] [Related]
8. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645 [TBL] [Abstract][Full Text] [Related]
10. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
11. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
12. Development of intra-arterial hyperthermia using a dextran-magnetite complex. Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Masunaga S; Koishi M; Okajima K; Nagata Y; Nishimura Y; Abe M Int J Hyperthermia; 1994; 10(6):785-93. PubMed ID: 7533813 [TBL] [Abstract][Full Text] [Related]
13. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
14. Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid. Bhardwaj A; Parekh K; Jain N J Mater Sci Mater Med; 2023 Mar; 34(3):11. PubMed ID: 36917271 [TBL] [Abstract][Full Text] [Related]
15. Magnetic nanoparticles for interstitial thermotherapy--feasibility, tolerance and achieved temperatures. Wust P; Gneveckow U; Johannsen M; Böhmer D; Henkel T; Kahmann F; Sehouli J; Felix R; Ricke J; Jordan A Int J Hyperthermia; 2006 Dec; 22(8):673-85. PubMed ID: 17390997 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Hilger I; Andrä W; Bähring R; Daum A; Hergt R; Kaiser WA Invest Radiol; 1997 Nov; 32(11):705-12. PubMed ID: 9387059 [TBL] [Abstract][Full Text] [Related]
17. Hyperthermia classic commentary: 'Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68. Jordan A Int J Hyperthermia; 2009 Nov; 25(7):512-6. PubMed ID: 19848613 [TBL] [Abstract][Full Text] [Related]
18. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles. Shaterabadi Z; Nabiyouni G; Soleymani M Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638 [TBL] [Abstract][Full Text] [Related]
19. Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Mitsumori M; Hiraoka M; Shibata T; Okuno Y; Nagata Y; Nishimura Y; Abe M; Hasegawa M; Nagae H; Ebisawa Y Hepatogastroenterology; 1996; 43(12):1431-7. PubMed ID: 8975944 [TBL] [Abstract][Full Text] [Related]
20. Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Gneveckow U; Jordan A; Scholz R; Brüss V; Waldöfner N; Ricke J; Feussner A; Hildebrandt B; Rau B; Wust P Med Phys; 2004 Jun; 31(6):1444-51. PubMed ID: 15259647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]