These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8950153)

  • 1. Potential for power deposition conformability using reflected-scanned planar ultrasound.
    Moros EG; Straube WL; Myerson RJ
    Int J Hyperthermia; 1996; 12(6):723-36. PubMed ID: 8950153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Jan; 32(1):230-40. PubMed ID: 15719974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Nov; 32(11):3246-56. PubMed ID: 16372408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the SURLAS applicator on radiation dose distributions during simultaneous thermoradiotherapy with helical tomotherapy.
    Novák P; Peñagarícano JA; Nahirnyak V; Corry P; Moros EG
    Phys Med Biol; 2008 May; 53(10):2509-22. PubMed ID: 18424880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and in vitro evaluation of temperature fluctuations during reflected-scanned planar ultrasound hyperthermia.
    Moros EG; Fan X; Straube WL; Myerson RJ
    Int J Hyperthermia; 1998; 14(4):367-82. PubMed ID: 9690149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental assessment of power and temperature penetration depth control with a dual frequency ultrasonic system.
    Moros EG; Fan X; Straube WL
    Med Phys; 1999 May; 26(5):810-7. PubMed ID: 10360546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer.
    Moros EG; Peñagaricano J; Novàk P; Straube WL; Myerson RJ
    Int J Hyperthermia; 2010; 26(7):699-709. PubMed ID: 20849263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system for the simultaneous delivery of intraoperative radiation and ultrasound hyperthermia.
    Montes H; Hynynen K
    Int J Hyperthermia; 1995; 11(1):109-19. PubMed ID: 7714364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation.
    Straube WL; Moros EG; Low DA; Klein EE; Willcut VM; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1996 Dec; 36(5):1189-200. PubMed ID: 8985042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study.
    Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL
    Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influencing factors and interfering effects in the control of the power distributions with the BSD-20000 hyperthermia ring system. 1. The clinical observables and phantom measurements].
    Wust P; Nadobny J; Fähling H; Riess H; Koch K; John W; Felix R
    Strahlenther Onkol; 1990 Dec; 166(12):822-30. PubMed ID: 2267660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional power deposition from direct-coupled and catheter-cooled interstitial ultrasound applicators.
    Nau WH; Diederich CJ; Stauffer PR
    Int J Hyperthermia; 2000; 16(2):129-44. PubMed ID: 10763742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified technique for RF-LCF interstitial hyperthermia.
    Leybovich LB; Dogan N; Sethi A
    Int J Hyperthermia; 2000; 16(5):405-13. PubMed ID: 11001574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of thermal therapies with moving power deposition field.
    Arora D; Minor MA; Skliar M; Roemer RB
    Phys Med Biol; 2006 Mar; 51(5):1201-19. PubMed ID: 16481688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry.
    Smith NB; Buchanan MT; Hynynen K
    Int J Radiat Oncol Biol Phys; 1999 Jan; 43(1):217-25. PubMed ID: 9989529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.