These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8950311)

  • 1. Reproduction and development in Drosophila are dependent upon catecholamines.
    Pendleton RG; Robinson N; Roychowdhury R; Rasheed A; Hillman R
    Life Sci; 1996; 59(24):2083-91. PubMed ID: 8950311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developmental role for catecholamines in Drosophila behavior.
    Pendleton RG; Rasheed A; Paluru P; Joyner J; Jerome N; Meyers RD; Hillman R
    Pharmacol Biochem Behav; 2005 Aug; 81(4):849-53. PubMed ID: 16051344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics.
    Pendleton RG; Rasheed A; Sardina T; Tully T; Hillman R
    Behav Genet; 2002 Mar; 32(2):89-94. PubMed ID: 12036114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal and embryonic sources of tyrosine hydroxylase during Drosophila embryogenesis.
    Pendleton R; Alday A; Paluru P; Joyner J; Jerome N; Hillman R
    Genesis; 2007 Mar; 45(3):152-5. PubMed ID: 17334989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice.
    Kobayashi K; Morita S; Sawada H; Mizuguchi T; Yamada K; Nagatsu I; Hata T; Watanabe Y; Fujita K; Nagatsu T
    J Biol Chem; 1995 Nov; 270(45):27235-43. PubMed ID: 7592982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development.
    Zhou QY; Quaife CJ; Palmiter RD
    Nature; 1995 Apr; 374(6523):640-3. PubMed ID: 7715703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase.
    Friggi-Grelin F; Coulom H; Meller M; Gomez D; Hirsh J; Birman S
    J Neurobiol; 2003 Mar; 54(4):618-27. PubMed ID: 12555273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity.
    Stathakis DG; Burton DY; McIvor WE; Krishnakumar S; Wright TR; O'Donnell JM
    Genetics; 1999 Sep; 153(1):361-82. PubMed ID: 10471719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new role for catecholamines: ontogenesis.
    Pendleton RG; Rasheed A; Roychowdhury R; Hillman R
    Trends Pharmacol Sci; 1998 Jul; 19(7):248-51. PubMed ID: 9703753
    [No Abstract]   [Full Text] [Related]  

  • 10. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.
    Korner G; Noain D; Ying M; Hole M; Flydal MI; Scherer T; Allegri G; Rassi A; Fingerhut R; Becu-Villalobos D; Pillai S; Wueest S; Konrad D; Lauber-Biason A; Baumann CR; Bindoff LA; Martinez A; Thöny B
    Brain; 2015 Oct; 138(Pt 10):2948-63. PubMed ID: 26276013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila tyrosine hydroxylase is encoded by the pale locus.
    Neckameyer WS; White K
    J Neurogenet; 1993 Apr; 8(4):189-99. PubMed ID: 8100577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of metallothionein-I+II levels in specific brain areas and liver in the rat: role of catecholamines.
    Gasull T; Giralt M; Garcia A; Hidalgo J
    Glia; 1994 Oct; 12(2):135-43. PubMed ID: 7868187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transsynaptic activity regulates proenkephalin and tyrosine hydroxylase gene expression and the response to reserpine in the hamster adrenal.
    Franklin SO; Zhu YS; Yoburn BC; Inturrisi CE
    Mol Pharmacol; 1991 Oct; 40(4):515-22. PubMed ID: 1717819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of endogenous catecholamines in lymphocytes on lymphocyte function.
    Qiu YH; Cheng C; Dai L; Peng YP
    J Neuroimmunol; 2005 Oct; 167(1-2):45-52. PubMed ID: 15996757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic dissection of dopamine and serotonin synthesis in the nervous system of Drosophila melanogaster.
    Budnik V; White K
    J Neurogenet; 1987 Dec; 4(6):309-14. PubMed ID: 3126282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster.
    Marican C; Duportets L; Birman S; Jallon JM
    Insect Biochem Mol Biol; 2004 Aug; 34(8):823-30. PubMed ID: 15262286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamine-containing neurons in Drosophila melanogaster: distribution and development.
    Budnik V; White K
    J Comp Neurol; 1988 Feb; 268(3):400-13. PubMed ID: 3129458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple roles for dopamine in Drosophila development.
    Neckameyer WS
    Dev Biol; 1996 Jun; 176(2):209-19. PubMed ID: 8660862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential and reproductive stage-dependent regulation of vasotocin secretion by catecholamines in the catfish Heteropneustes fossilis.
    Singh RK; Chaube R; Joy KP
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Dec; 166(4):619-26. PubMed ID: 24036478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hCG-induced spawning by alpha-methylparatyrosine, a tyrosine hydroxylase inhibitor, in the catfish Heteropneustes fossilis (Bloch).
    Chaube R; Joy KP
    Indian J Exp Biol; 2010 Jun; 48(6):549-53. PubMed ID: 20882755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.