These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8950649)

  • 1. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates.
    Costa KD; Hunter PJ; Wayne JS; Waldman LK; Guccione JM; McCulloch AD
    J Biomech Eng; 1996 Nov; 118(4):464-72. PubMed ID: 8950649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I--Cylindrical and spherical polar coordinates.
    Costa KD; Hunter PJ; Rogers JM; Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1996 Nov; 118(4):452-63. PubMed ID: 8950648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biventricular myocardial strains via nonrigid registration of anatomical NURBS model [corrected].
    Tustison NJ; Amini AA
    IEEE Trans Med Imaging; 2006 Jan; 25(1):94-112. PubMed ID: 16398418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional stress and strain in passive rabbit left ventricle: a model study.
    Vetter FJ; McCulloch AD
    Ann Biomed Eng; 2000 Jul; 28(7):781-92. PubMed ID: 11016415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium.
    McCulloch AD; Omens JH
    J Biomech; 1991; 24(7):539-48. PubMed ID: 1880138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of Left Ventricular Dynamics Using a Low-Order Mathematical Model.
    Moulton MJ; Hong BD; Secomb TW
    Cardiovasc Eng Technol; 2017 Dec; 8(4):480-494. PubMed ID: 28812230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction.
    Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD
    Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part II: Three dimensional formulation for thick ventricular wall segments.
    Horowitz A; Sheinman I; Lanir Y
    J Biomech Eng; 1988 Feb; 110(1):62-8. PubMed ID: 3347025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active contraction of the cardiac ventricle and distortion of the microstructural architecture.
    Pezzuto S; Ambrosi D
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1578-96. PubMed ID: 25319381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of cross-fiber deformation on axial fiber stress in myocardium.
    Zahalak GI; de Laborderie V; Guccione JM
    J Biomech Eng; 1999 Aug; 121(4):376-85. PubMed ID: 10464691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.
    Shen JJ; Xu FY; Yang WA
    Comput Biol Med; 2016 Aug; 75():63-73. PubMed ID: 27253618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.