These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8950652)

  • 1. Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation.
    Siebes M; Campbell CS; D'Argenio DZ
    J Biomech Eng; 1996 Nov; 118(4):489-97. PubMed ID: 8950652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition.
    Konala BC; Das A; Banerjee RK
    Mol Cell Biomech; 2011 Mar; 8(1):1-20. PubMed ID: 21391325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of coronary occlusion in the pathogenesis of myocardial infarction.
    Santamore WP; Yelton BW; Ogilby JD
    J Am Coll Cardiol; 1991 Nov; 18(5):1397-405. PubMed ID: 1918718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological flow simulation in residual human stenoses after coronary angioplasty.
    Banerjee RK; Back LH; Back MR; Cho YI
    J Biomech Eng; 2000 Aug; 122(4):310-20. PubMed ID: 11036553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid dynamics of coronary artery stenosis.
    Mates RE; Gupta RL; Bell AC; Klocke FJ
    Circ Res; 1978 Jan; 42(1):152-62. PubMed ID: 618597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters.
    Konala BC; Das A; Banerjee RK
    J Biomech; 2011 Mar; 44(5):842-7. PubMed ID: 21215971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical model of a compliant arterial stenosis.
    Santamore WP; Bove AA
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H274-85. PubMed ID: 3970228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of frictional losses and pulsatile flow on the collapse of stenotic arteries.
    Downing JM; Ku DN
    J Biomech Eng; 1997 Aug; 119(3):317-24. PubMed ID: 9285345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics of coronary artery stenosis.
    Wong AY; Klassen GA; Johnstone DE
    Can J Physiol Pharmacol; 1984 Jan; 62(1):59-69. PubMed ID: 6713284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation in the stenosed coronary circulation.
    Barnea O; Jaron D; Santamore WP
    Comput Biol Med; 1994 Jul; 24(4):255-67. PubMed ID: 7842648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the chosen model of stenosis on pressure-flow relationships in isolated perfused arteries.
    von Arnim T; Crea F; Chierchia S; Maseri A
    Int J Cardiol; 1985 Sep; 9(1):81-90. PubMed ID: 4044068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fixed vs nonfixed coronary stenosis: the response to a fall in coronary pressure in a canine model.
    Schwartz JS
    Cathet Cardiovasc Diagn; 1982; 8(4):383-92. PubMed ID: 7127463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction to flow rate--pressure drop relation in coronary angioplasty: steady streaming effect.
    Sarkar A; Jayaraman G
    J Biomech; 1998 Sep; 31(9):781-91. PubMed ID: 9802778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of capillaries in determining CBF reserve: new insights using myocardial contrast echocardiography.
    Jayaweera AR; Wei K; Coggins M; Bin JP; Goodman C; Kaul S
    Am J Physiol; 1999 Dec; 277(6):H2363-72. PubMed ID: 10600857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study.
    Wu J; Liu G; Huang W; Ghista DN; Wong KK
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1835-45. PubMed ID: 25398021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions.
    Kamangar S; Badruddin IA; Badarudin A; Nik-Ghazali N; Govindaraju K; Salman Ahmed NJ; Yunus Khan TM
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):365-372. PubMed ID: 27612619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in PTCA. A model of ischemia in humans].
    Prachar H
    Acta Med Austriaca Suppl; 1991; 42():1-35. PubMed ID: 1830715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study.
    Kolli KK; Min JK; Ha S; Soohoo H; Xiong G
    J Am Heart Assoc; 2016 Jun; 5(7):. PubMed ID: 27364988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of translesional hemodynamics: comparison of pressure and flow methods in stenosis assessment in patients with coronary artery disease.
    Di Mario C; Gil R; de Feyter PJ; Schuurbiers JC; Serruys PW
    Cathet Cardiovasc Diagn; 1996 Jun; 38(2):189-201. PubMed ID: 8776528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.