These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8951093)

  • 1. Molecular switch of F0F1-ATP synthase, G-protein, and other ATP-driven enzymes.
    Noji H; Amano T; Yoshida M
    J Bioenerg Biomembr; 1996 Oct; 28(5):451-7. PubMed ID: 8951093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance.
    Suzuki T; Murakami T; Iino R; Suzuki J; Ono S; Shirakihara Y; Yoshida M
    J Biol Chem; 2003 Nov; 278(47):46840-6. PubMed ID: 12881515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis.
    Masaike T; Suzuki T; Tsunoda SP; Konno H; Yoshida M
    Biochem Biophys Res Commun; 2006 Apr; 342(3):800-7. PubMed ID: 16517239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque generation and utilization in motor enzyme F0F1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP Synthesis by half-torque F0F1.
    Usukura E; Suzuki T; Furuike S; Soga N; Saita E; Hisabori T; Kinosita K; Yoshida M
    J Biol Chem; 2012 Jan; 287(3):1884-91. PubMed ID: 22128167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the γ-ε complex of cyanobacterial F
    Murakami S; Kondo K; Katayama S; Hara S; Sunamura EI; Yamashita E; Groth G; Hisabori T
    Biochem J; 2018 Sep; 475(18):2925-2939. PubMed ID: 30054433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational coupling in the F0F1 ATP synthase.
    Nakamoto RK; Ketchum CJ; al-Shawi MK
    Annu Rev Biophys Biomol Struct; 1999; 28():205-34. PubMed ID: 10410801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations of structure and function in subunit c of Escherichia coli F0F1 ATP synthase.
    Fillingame RH; Girvin ME; Zhang Y
    Biochem Soc Trans; 1995 Nov; 23(4):760-6. PubMed ID: 8654833
    [No Abstract]   [Full Text] [Related]  

  • 9. ATP-induced dimerization of the F0F1 ε subunit from Bacillus PS3: a hydrogen exchange-mass spectrometry study.
    Rodriguez AD; Dunn SD; Konermann L
    Biochemistry; 2014 Jun; 53(24):4072-80. PubMed ID: 24870150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy transmission in ATP synthase: from the gamma-c rotor to the alpha 3 beta 3 oligomer fixed by OSCP-b stator via the beta DELSEED sequence.
    Kagawa Y; Hamamoto T
    J Bioenerg Biomembr; 1996 Oct; 28(5):421-31. PubMed ID: 8951089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation.
    Feniouk BA; Junge W
    FEBS Lett; 2005 Sep; 579(23):5114-8. PubMed ID: 16154570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation.
    Sambongi Y; Iko Y; Tanabe M; Omote H; Iwamoto-Kihara A; Ueda I; Yanagida T; Wada Y; Futai M
    Science; 1999 Nov; 286(5445):1722-4. PubMed ID: 10576736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase.
    Villaverde J; Cladera J; Padrós E; Rigaud JL; Duñach M
    Eur J Biochem; 1997 Mar; 244(2):441-8. PubMed ID: 9119010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F
    Kondo K; Takeyama Y; Sunamura EI; Madoka Y; Fukaya Y; Isu A; Hisabori T
    Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):319-325. PubMed ID: 29470949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase.
    Czub J; Grubmüller H
    J Am Chem Soc; 2014 May; 136(19):6960-8. PubMed ID: 24798048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review).
    Leyva JA; Bianchet MA; Amzel LM
    Mol Membr Biol; 2003; 20(1):27-33. PubMed ID: 12745923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A(1)A(0) ATP synthase.
    Manimekalai MS; Kumar A; Balakrishna AM; Grüber G
    J Struct Biol; 2009 Apr; 166(1):38-45. PubMed ID: 19138746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
    Buchert F; Konno H; Hisabori T
    Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1.
    Kagawa Y; Hamamoto T
    Biochem Biophys Res Commun; 1997 Nov; 240(2):247-56. PubMed ID: 9388462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electrostatic interactions in catalytic centers of F1-ATPase].
    Tikhonov AN; Pogrebnaia AF; Romanovskiĭ IuM
    Biofizika; 2003; 48(6):1052-70. PubMed ID: 14714522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.