These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8951379)

  • 1. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.
    Zheng M; Huang X; Smith GK; Yang X; Gao X
    J Mol Biol; 1996 Nov; 264(2):323-36. PubMed ID: 8951379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structures of the Huntington's disease DNA triplets, (CAG)n.
    Mariappan SV; Silks LA; Chen X; Springer PA; Wu R; Moyzis RK; Bradbury EM; Garcia AE; Gupta G
    J Biomol Struct Dyn; 1998 Feb; 15(4):723-44. PubMed ID: 9514249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of actinomycin D to DNA oligomers of CXG trinucleotide repeats.
    Chen FM
    Biochemistry; 1998 Mar; 37(11):3955-64. PubMed ID: 9521717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA.
    Gacy AM; McMurray CT
    Biochemistry; 1998 Jun; 37(26):9426-34. PubMed ID: 9649325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes.
    Smith GK; Jie J; Fox GE; Gao X
    Nucleic Acids Res; 1995 Nov; 23(21):4303-11. PubMed ID: 7501450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats.
    Nakatani K; Hagihara S; Goto Y; Kobori A; Hagihara M; Hayashi G; Kyo M; Nomura M; Mishima M; Kojima C
    Nat Chem Biol; 2005 Jun; 1(1):39-43. PubMed ID: 16407992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTG repeats associated with human genetic disease are inherently flexible.
    Chastain PD; Sinden RR
    J Mol Biol; 1998 Jan; 275(3):405-11. PubMed ID: 9466918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and thermodynamic studies of DNA duplexes containing alpha-anomeric C, A, and G nucleotides and polarity reversals: coexistence of localized parallel and antiparallel DNA.
    Aramini JM; van de Sande JH; Germann MW
    Biochemistry; 1997 Aug; 36(32):9715-25. PubMed ID: 9245403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and folding dynamics of a DNA hairpin with a stabilising d(GNA) trinucleotide loop: influence of base pair mis-matches and point mutations on conformational equilibria.
    Balkwill GD; Williams HE; Searle MS
    Org Biomol Chem; 2007 Mar; 5(5):832-9. PubMed ID: 17315071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures.
    Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H
    Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation.
    Pearson CE; Eichler EE; Lorenzetti D; Kramer SF; Zoghbi HY; Nelson DL; Sinden RR
    Biochemistry; 1998 Feb; 37(8):2701-8. PubMed ID: 9485421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of sequence context and length on the kinetics of DNA duplex formation from complementary hairpins possessing (CNG) repeats.
    Paiva AM; Sheardy RD
    J Am Chem Soc; 2005 Apr; 127(15):5581-5. PubMed ID: 15826196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genomic instability and neurodegenerative disease].
    Miki T; Yamagata H
    Rinsho Byori; 1999 Jan; 47(1):37-45. PubMed ID: 10067364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic instabilities of triplet repeat sequences by recombination.
    Jakupciak JP; Wells RD
    IUBMB Life; 2000 Dec; 50(6):355-9. PubMed ID: 11327307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.