BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8951400)

  • 1. Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization.
    McDonald PV; Basdogan C; Bloomberg JJ; Layne CS
    Exp Brain Res; 1996 Nov; 112(2):325-34. PubMed ID: 8951400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular activation patterns during treadmill walking after space flight.
    Layne CS; McDonald PV; Bloomberg JJ
    Exp Brain Res; 1997 Jan; 113(1):104-16. PubMed ID: 9028779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight.
    Layne CS; Lange GW; Pruett CJ; McDonald PV; Merkle LA; Mulavara AP; Smith SL; Kozlovskaya IB; Bloomberg JJ
    Acta Astronaut; 1998; 43(3-6):107-19. PubMed ID: 11541918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight.
    Newman DJ; Jackson DK; Bloomberg JJ
    Exp Brain Res; 1997 Oct; 117(1):30-42. PubMed ID: 9386002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular function in space flight.
    Nicogossian AE; Charles JB; Bungo MW; Leach-Huntoon CS; Nicgossian AE
    Acta Astronaut; 1991; 24():323-8. PubMed ID: 11540059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthostatic intolerance after spaceflight.
    Buckey JC; Lane LD; Levine BD; Watenpaugh DE; Wright SJ; Moore WE; Gaffney FA; Blomqvist CG
    J Appl Physiol (1985); 1996 Jul; 81(1):7-18. PubMed ID: 8828642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in walking strategies after spaceflight.
    Bloomberg JJ; Mulavara AP
    IEEE Eng Med Biol Mag; 2003; 22(2):58-62. PubMed ID: 12733460
    [No Abstract]   [Full Text] [Related]  

  • 10. Dual-task walking reduces lower limb range of motion in individuals with Parkinson's disease and freezing of gait: But does it happen during what events through the gait cycle?
    Pinto C; Salazar AP; Hennig EM; Kerr G; Pagnussat AS
    PLoS One; 2020; 15(12):e0243133. PubMed ID: 33290429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance.
    McCulloch MU; Brunt D; Vander Linden D
    J Orthop Sports Phys Ther; 1993 Jan; 17(1):2-10. PubMed ID: 8467332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats.
    Riley DA; Ellis S; Slocum GR; Sedlak FR; Bain JL; Krippendorf BB; Lehman CT; Macias MY; Thompson JL; Vijayan K; De Bruin JA
    J Appl Physiol (1985); 1996 Jul; 81(1):133-44. PubMed ID: 8828655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in toe clearance during treadmill walking after long-duration spaceflight.
    Miller CA; Peters BT; Brady RR; Richards JR; Ploutz-Snyder RJ; Mulavara AP; Bloomberg JJ
    Aviat Space Environ Med; 2010 Oct; 81(10):919-28. PubMed ID: 20922883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical examination during space flight.
    Harris BA; Billica RD; Bishop SL; Blackwell T; Layne CS; Harm DL; Sandoz GR; Rosenow EC
    Mayo Clin Proc; 1997 Apr; 72(4):301-8. PubMed ID: 9121174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The independent effect of added mass on the stability of the sagittal plane leg kinematics during steady-state human walking.
    Arellano CJ; O'Connor DP; Layne C; Kurz MJ
    J Exp Biol; 2009 Jun; 212(Pt 12):1965-70. PubMed ID: 19483014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of toe-off event time during treadmill locomotion using kinematic data.
    De Witt JK
    J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of gait cycles in treadmill walking using a Kinect.
    Auvinet E; Multon F; Aubin CE; Meunier J; Raison M
    Gait Posture; 2015 Feb; 41(2):722-5. PubMed ID: 25442670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of body fluid compartments during short-term spaceflight.
    Leach CS; Alfrey CP; Suki WN; Leonard JI; Rambaut PC; Inners LD; Smith SM; Lane HW; Krauhs JM
    J Appl Physiol (1985); 1996 Jul; 81(1):105-16. PubMed ID: 8828652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.