These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 8951402)

  • 21. Lamina I-periaqueductal gray (PAG) projections represent only a limited part of the total spinal and caudal medullary input to the PAG in the cat.
    Mouton LJ; Klop E; Holstege G
    Brain Res Bull; 2001 Jan; 54(2):167-74. PubMed ID: 11275406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Columnar organization of estrogen receptor-alpha immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster.
    Gerrits PO; Krukerink M; Veening JG
    Neuroscience; 2009 Jun; 161(2):459-74. PubMed ID: 19321152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Descending projections of Forel's field H neurones to the brain stem and the upper cervical spinal cord in the cat.
    Isa T; Sasaki S
    Exp Brain Res; 1992; 88(3):563-79. PubMed ID: 1375165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two parts of the nucleus prepositus hypoglossi project to two different subdivisions of the dorsolateral periaqueductal gray in cat.
    Klop EM; Mouton LJ; Ehling T; Holstege G
    J Comp Neurol; 2005 Nov; 492(3):303-22. PubMed ID: 16217796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct projections from the nucleus retroambiguus to cricothyroid motoneurons in the cat.
    Boers J; Klop EM; Hulshoff AC; de Weerd H; Holstege G
    Neurosci Lett; 2002 Feb; 319(1):5-8. PubMed ID: 11814640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demonstration of axon terminals of projection fibers from the periaqueductal gray onto neurons in the nucleus raphe magnus which send their axons to the trigeminal sensory nuclei.
    Li YQ; Shinonaga Y; Takada M; Mizuno N
    Brain Res; 1993 Apr; 608(1):138-40. PubMed ID: 7684309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat.
    Holstege G
    J Comp Neurol; 1987 Jun; 260(1):98-126. PubMed ID: 3496365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a periaqueductal gray-nucleus retroambiguus-spinal cord pathway in the rat.
    Holstege G; Kerstens L; Moes MC; Vanderhorst VG
    Neuroscience; 1997 Sep; 80(2):587-98. PubMed ID: 9284360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projections from the rostral mesencephalic reticular formation to the spinal cord. An HRP and autoradiographical tracing study in the cat.
    Holstege G; Cowie RJ
    Exp Brain Res; 1989; 75(2):265-79. PubMed ID: 2721608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ascending propriospinal afferents to area X (substantia grisea centralis) of the spinal cord in the rat.
    Matsushita M
    Exp Brain Res; 1998 Apr; 119(3):356-66. PubMed ID: 9551836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration.
    Xu Q; Grant G
    Arch Ital Biol; 1990 Jul; 128(2-4):209-28. PubMed ID: 1702608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of the nigrotectospinal pathway in the cat: a light and electron microscopic study.
    Tokuno H; Nakamura Y
    Brain Res; 1987 Dec; 436(1):76-84. PubMed ID: 3690356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP).
    LaMotte CC; Kapadia SE; Shapiro CM
    J Comp Neurol; 1991 Sep; 311(4):546-62. PubMed ID: 1721924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. WGA-HRP studies on the fiber connections from the spinal cord to the Deiters' nucleus.
    Mori Y; Tokita T; Miyata H
    Acta Otolaryngol Suppl; 1991; 481():230-3. PubMed ID: 1718138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary afferent projections from the upper respiratory tract in the muskrat.
    Panneton WM
    J Comp Neurol; 1991 Jun; 308(1):51-65. PubMed ID: 1714922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subcortical contributions to head movements in macaques. II. Connections of a medial pontomedullary head-movement region.
    Cowie RJ; Smith MK; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2665-82. PubMed ID: 7534824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections.
    Mantyh PW
    J Neurophysiol; 1983 Mar; 49(3):582-94. PubMed ID: 6300351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large segmental differences in the spinal projections to the periaqueductal gray in the cat.
    Mouton LJ; VanderHorst VG; Holstege G
    Neurosci Lett; 1997 Nov; 238(1-2):1-4. PubMed ID: 9464640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.