These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 8951402)

  • 41. Estrogen receptor-alpha immunoreactive neurons in the ventrolateral periaqueductal gray receive monosynaptic input from the lumbosacral cord in the rhesus monkey.
    Vanderhorst VG; Terasawa E; Ralston HJ
    J Comp Neurol; 2002 Jan; 443(1):27-42. PubMed ID: 11793345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spinal projections from the periaqueductal grey and dorsal raphe in the rat, cat and monkey.
    Mantyh PW; Peschanski M
    Neuroscience; 1982; 7(11):2769-76. PubMed ID: 7155351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Demonstration of habenular neurons which receive afferent fibers from the nucleus accumbens and send their axons to the midbrain periaqueductal gray.
    Li YQ; Takada M; Mizuno N
    Neurosci Lett; 1993 Aug; 158(1):55-8. PubMed ID: 7694201
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reappraisal of projection levels of the corticospinal fibers in the cat, with special reference to the fibers descending through the dorsal funiculus: a WGA-HRP study.
    Satomi H; Takahashi K; Kosaka I; Aoki M
    Brain Res; 1989 Jul; 492(1-2):255-60. PubMed ID: 2473828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique.
    Matsushita M; Ikeda M; Hosoya Y
    J Comp Neurol; 1979 Mar; 184(1):63-80. PubMed ID: 84003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vestibulospinal effects on neurons in different regions of the gray matter of the cat upper cervical cord.
    Isu N; Thomson DB; Wilson VJ
    J Neurophysiol; 1996 Oct; 76(4):2439-46. PubMed ID: 8899616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spinal cord projections from hindlimb muscle nerves in the rat studied by transganglionic transport of horseradish peroxidase, wheat germ agglutinin conjugated horseradish peroxidase, or horseradish peroxidase with dimethylsulfoxide.
    Molander C; Grant G
    J Comp Neurol; 1987 Jun; 260(2):246-55. PubMed ID: 3038969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomical evidence that hypertension associated with the defence reaction in the cat is mediated by a direct projection from a restricted portion of the midbrain periaqueductal grey to the subretrofacial nucleus of the medulla.
    Carrive P; Bandler R; Dampney RA
    Brain Res; 1988 Sep; 460(2):339-45. PubMed ID: 2465061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ascending and descending projections from nucleus reticularis magnocellularis and nucleus reticularis gigantocellularis: an autoradiographic and horseradish peroxidase study in the rat.
    Zemlan FP; Behbehani MM; Beckstead RM
    Brain Res; 1984 Feb; 292(2):207-20. PubMed ID: 6692154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurons in the guinea pig (Cavia porcellus) lateral lumbosacral spinal cord project to the central part of the lateral periaqueductal gray matter.
    Kuipers R; Klop EM
    Brain Res; 2006 Jul; 1101(1):43-50. PubMed ID: 16782073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cells of origin of long descending propriospinal fibers connecting the spinal enlargements in cat and monkey determined by horseradish peroxidase and electrophysiological techniques.
    Skinner RD; Coulter JD; Adams RJ; Remmel RS
    J Comp Neurol; 1979 Dec; 188(3):443-54. PubMed ID: 114558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesencephalic projections to the first cervical segment in the cat.
    Satoda T; Matsumoto H; Zhou L; Rose PK; Richmond FJ
    Exp Brain Res; 2002 Jun; 144(3):397-413. PubMed ID: 12021821
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Segmental and laminar organization of the spinothalamic neurons in cat: evidence for at least five separate clusters.
    Klop EM; Mouton LJ; Holstege G
    J Comp Neurol; 2005 Dec; 493(4):580-95. PubMed ID: 16304630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Projection of nodose ganglion cells to the upper cervical spinal cord in the rat.
    McNeill DL; Chandler MJ; Fu QG; Foreman RD
    Brain Res Bull; 1991 Aug; 27(2):151-5. PubMed ID: 1720704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations.
    Liang FY; Moret V; Wiesendanger M; Rouiller EM
    J Comp Neurol; 1991 Sep; 311(3):356-66. PubMed ID: 1720143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M
    J Comp Neurol; 1988 Aug; 274(2):239-54. PubMed ID: 2463288
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Caudal medullary pathways to lumbosacral motoneuronal cell groups in the cat: evidence for direct projections possibly representing the final common pathway for lordosis.
    Vanderhorst VG; Holstege G
    J Comp Neurol; 1995 Aug; 359(3):457-75. PubMed ID: 7499541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase.
    Kuo DC; Nadelhaft I; Hisamitsu T; de Groat WC
    J Comp Neurol; 1983 May; 216(2):162-74. PubMed ID: 6863600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey.
    Holstege G; Blok BF; Ralston DD
    Neurosci Lett; 1988 Dec; 95(1-3):97-101. PubMed ID: 2465513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase.
    Roppolo JR; Nadelhaft I; de Groat WC
    J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.