These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the electrical gradient across the gill of the sea water-adapted eel. House CR; Maetz J Comp Biochem Physiol A Comp Physiol; 1974 Mar; 47(3):917-24. PubMed ID: 4156261 [No Abstract] [Full Text] [Related]
3. Dependence of ion flux across a membrane on ionic concentration. Smith PG J Theor Biol; 1973 Sep; 41(2):269-86. PubMed ID: 4751398 [No Abstract] [Full Text] [Related]
4. Ionic permeability changes occurring at excitatory receptor membranes of chemical synapses. Anwyl R; Usherwood PN Nature; 1975 Oct; 257(5525):410-12. PubMed ID: 1178043 [No Abstract] [Full Text] [Related]
5. Active ion transport and resting potential in smooth muscle cells. Casteels R; Droogmans G; Hendrickx H Philos Trans R Soc Lond B Biol Sci; 1973 Mar; 265(867):47-56. PubMed ID: 4144698 [No Abstract] [Full Text] [Related]
6. Membrane potential: which formulae do hold? Lenzi P Arch Sci Biol (Bologna); 1978; 62(1-4):173-6. PubMed ID: 555323 [No Abstract] [Full Text] [Related]
7. Electrogenic Na-K antiport and electrogenic Na-C1 symport in basolateral membrane of frog stomach. Schwartz M; Carrasquer G; Rehm WS Prog Clin Biol Res; 1981; 73():247-63. PubMed ID: 6275398 [No Abstract] [Full Text] [Related]
8. Mechanisms of ion transport across the choroid plexus. Wright EM J Physiol; 1972 Oct; 226(2):545-71. PubMed ID: 4538945 [TBL] [Abstract][Full Text] [Related]
9. Electrolyte transport by bullfrog colon in vitro. Perheentupa J; Harrison HC; Harrison HE Biochim Biophys Acta; 1972 Mar; 255(3):858-72. PubMed ID: 4537071 [No Abstract] [Full Text] [Related]
10. The theory of transport phenomena in biological membranes. I. The passive transport and resting potential. Volkenstein MV; Fishman SN Biochim Biophys Acta; 1970 Mar; 203(1):1-9. PubMed ID: 5445677 [No Abstract] [Full Text] [Related]
11. [Functional properties of surface membranes of excitable cells and metabolism]. Kostiuk PG Fiziol Zh; 1970; 16(2):155-60. PubMed ID: 5486586 [No Abstract] [Full Text] [Related]
12. The sodium-potassium exchange pump: relation of metabolism to electrical properties of the cell. I. Theory. Rapoport SI Biophys J; 1970 Mar; 10(3):246-59. PubMed ID: 5434647 [TBL] [Abstract][Full Text] [Related]
13. An equivalent electrical circuit model for "sodium-transporting" epithelia in the steady-state. Schultz SG; Frizzell RA; Nellans HN J Theor Biol; 1977 Mar; 65(2):215-29. PubMed ID: 853747 [No Abstract] [Full Text] [Related]
14. Evidence for ionic pores in excitable membranes. Armstrong CM Biophys J; 1975 Sep; 15(9):932-3. PubMed ID: 1182266 [No Abstract] [Full Text] [Related]
15. Thermodynamics and kinetics of electrogenic pumps. Chapman JB Soc Gen Physiol Ser; 1984; 38():17-32. PubMed ID: 6320457 [No Abstract] [Full Text] [Related]
16. Ion transport across sodium channels in biological membranes. Chizmadjev YA; Aityan SK J Theor Biol; 1977 Feb; 64(3):429-53. PubMed ID: 839815 [No Abstract] [Full Text] [Related]
17. Mechanisms of sodium and chloride transport by gallbladder epithelium. Reuss L Fed Proc; 1979 Dec; 38(13):2733-8. PubMed ID: 228985 [No Abstract] [Full Text] [Related]
18. [Permeabilities of hepatic cell membranes to potassium, sodium and chlorine]. Claret M; Mazet JL J Physiol (Paris); 1971; 63(6):190A. PubMed ID: 5152222 [No Abstract] [Full Text] [Related]
19. Dipole mechanisms of electrical, optical and thermal energy transductions in nerve membrane. Wei LY Ann N Y Acad Sci; 1974 Feb; 227():285-93. PubMed ID: 4524338 [No Abstract] [Full Text] [Related]
20. Contributions of electrogenic pumps and parallel passive pathways to transmembrane voltage. Rehm WS; Carrasquer G; Schwartz M Prog Clin Biol Res; 1983; 126():313-27. PubMed ID: 6310640 [No Abstract] [Full Text] [Related] [Next] [New Search]