These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8951648)
21. A novel method for the modelling of peptide ligands to their receptors. Singh J; Saldanha J; Thornton JM Protein Eng; 1991 Feb; 4(3):251-61. PubMed ID: 1857711 [TBL] [Abstract][Full Text] [Related]
22. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes. Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411 [TBL] [Abstract][Full Text] [Related]
23. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. Thépaut M; Guzzi C; Sutkeviciute I; Sattin S; Ribeiro-Viana R; Varga N; Chabrol E; Rojo J; Bernardi A; Angulo J; Nieto PM; Fieschi F J Am Chem Soc; 2013 Feb; 135(7):2518-29. PubMed ID: 23360500 [TBL] [Abstract][Full Text] [Related]
24. Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. Kemper S; Patel MK; Errey JC; Davis BG; Jones JA; Claridge TD J Magn Reson; 2010 Mar; 203(1):1-10. PubMed ID: 20022272 [TBL] [Abstract][Full Text] [Related]
25. A strategy for theoretical binding constant, Ki, calculations for neuraminidase aromatic inhibitors designed on the basis of the active site structure of influenza virus neuraminidase. Jedrzejas MJ; Singh S; Brouillette WJ; Air GM; Luo M Proteins; 1995 Oct; 23(2):264-77. PubMed ID: 8592707 [TBL] [Abstract][Full Text] [Related]
26. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 1. Adenosine conformations by proton two-dimensional transferred nuclear Overhauser effect spectroscopy. Lin Y; Nageswara Rao BD Biochemistry; 2000 Apr; 39(13):3636-46. PubMed ID: 10736162 [TBL] [Abstract][Full Text] [Related]
27. Bioactive conformation of stromelysin inhibitors determined by transferred nuclear Overhauser effects. Gonnella NC; Bohacek R; Zhang X; Kolossváry I; Paris CG; Melton R; Winter C; Hu SI; Ganu V Proc Natl Acad Sci U S A; 1995 Jan; 92(2):462-6. PubMed ID: 7831311 [TBL] [Abstract][Full Text] [Related]
28. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling. Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092 [TBL] [Abstract][Full Text] [Related]
29. Determination of ligand binding modes in weak protein-ligand complexes using sparse NMR data. Mohanty B; Williams ML; Doak BC; Vazirani M; Ilyichova O; Wang G; Bermel W; Simpson JS; Chalmers DK; King GF; Mobli M; Scanlon MJ J Biomol NMR; 2016 Nov; 66(3):195-208. PubMed ID: 27778134 [TBL] [Abstract][Full Text] [Related]
30. Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand-Receptor Complexes. Krishna NR; Jayalakshmi V Top Curr Chem; 2008; 273():15-54. PubMed ID: 23605458 [TBL] [Abstract][Full Text] [Related]
32. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method. Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671 [TBL] [Abstract][Full Text] [Related]
33. Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK. Subramanian J; Sharma S; B-Rao C ChemMedChem; 2008 Feb; 3(2):336-44. PubMed ID: 18081134 [TBL] [Abstract][Full Text] [Related]
34. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays. Khan MT; Fuskevåg OM; Sylte I J Med Chem; 2009 Jan; 52(1):48-61. PubMed ID: 19072688 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of pseudolysin and thermolysin by hydroxamate-based MMP inhibitors. Adekoya OA; Sjøli S; Wuxiuer Y; Bilto I; Marques SM; Santos MA; Nuti E; Cercignani G; Rossello A; Winberg JO; Sylte I Eur J Med Chem; 2015 Jan; 89():340-8. PubMed ID: 25462250 [TBL] [Abstract][Full Text] [Related]
36. Detection of intermolecular transferred NOEs in large protein complexes using asymmetric deuteration: HIV-1 gp120 in complex with a CCR5 peptide. Srivastava G; Moseri A; Kessler N; Akabayov SR; Arshava B; Naider F; Anglister J FEBS J; 2016 Nov; 283(22):4084-4096. PubMed ID: 27701820 [TBL] [Abstract][Full Text] [Related]
37. Combined molecular dynamics, STD-NMR, and CORCEMA protocol yields structural model for a UDP-galactopyranose mutase-inhibitor complex. Shi Y; Ardá A; Pinto BM Bioorg Med Chem Lett; 2015 Mar; 25(6):1284-7. PubMed ID: 25681227 [TBL] [Abstract][Full Text] [Related]
38. Computational combinatorial ligand design: application to human alpha-thrombin. Caflisch A J Comput Aided Mol Des; 1996 Oct; 10(5):372-96. PubMed ID: 8951649 [TBL] [Abstract][Full Text] [Related]
39. The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. van Aalten DM; Amadei A; Linssen AB; Eijsink VG; Vriend G; Berendsen HJ Proteins; 1995 May; 22(1):45-54. PubMed ID: 7675786 [TBL] [Abstract][Full Text] [Related]
40. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design. Imai T; Oda K; Kovalenko A; Hirata F; Kidera A J Am Chem Soc; 2009 Sep; 131(34):12430-40. PubMed ID: 19655800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]