These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 8952169)
41. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. Tiwary M; Naik SN; Tewary DK; Mittal PK; Yadav S J Vector Borne Dis; 2007 Sep; 44(3):198-204. PubMed ID: 17896622 [TBL] [Abstract][Full Text] [Related]
42. Comparative Activity And Efficacy of Sumilarv 0.5G and Altosid Xr Briquet Against Culex Quinquefasciatus and Aedes Aegypti in Simulated Catch Basins. Su T J Am Mosq Control Assoc; 2023 Sep; 39(3):173-182. PubMed ID: 37796736 [TBL] [Abstract][Full Text] [Related]
43. Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101), to control breeding of Anopheles stephensi and Culex quinquefasciatus. Mittal PK; Adak T; Batra CP; Sharma VP Indian J Malariol; 1993 Jun; 30(2):81-9. PubMed ID: 8405598 [TBL] [Abstract][Full Text] [Related]
44. Bioactivity of citrus seed for mosquito-borne diseases larval control. Sumroiphon S; Yuwaree C; Arunlertaree C; Komalamisra N; Rongsriyam Y Southeast Asian J Trop Med Public Health; 2006; 37 Suppl 3():123-7. PubMed ID: 17547066 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of methoprene (a juvenile hormone) against Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Das PK; Mariappan T; Rajagopalan PK Indian J Med Res; 1981 Jul; 74():18-22. PubMed ID: 7309181 [No Abstract] [Full Text] [Related]
46. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers. Vezzani D; Albicócco AP Med Vet Entomol; 2009 Mar; 23(1):78-84. PubMed ID: 19239617 [TBL] [Abstract][Full Text] [Related]
47. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Beckage NE; Marion KM; Walton WE; Wirth MC; Tan FF Arch Insect Biochem Physiol; 2004 Nov; 57(3):111-22. PubMed ID: 15484259 [TBL] [Abstract][Full Text] [Related]
48. Control of Aedes albopictus larvae using time-release larvicide formulations in Louisiana. Nasci RS; Wright GB; Willis FS J Am Mosq Control Assoc; 1994 Mar; 10(1):1-6. PubMed ID: 7516963 [TBL] [Abstract][Full Text] [Related]
49. Susceptibility of Aedes aegypti and Culex quinquefasciatus Larvae to gedunin-related limonoids. Gurulingappa H; Tare V; Pawar P; Tungikar V; Jorapur YR; Madhavi S; Bhat SV Chem Biodivers; 2009 Jun; 6(6):897-902. PubMed ID: 19551731 [TBL] [Abstract][Full Text] [Related]
50. Relative efficacy of five synthetic pyrethroids against four vector mosquitoes, Anopheles culicifacies, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. Mittal PK; Adak T; Subbarao SK Indian J Malariol; 2002; 39(1-2):34-8. PubMed ID: 14686108 [No Abstract] [Full Text] [Related]
51. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. Kamal HA; Khater EI J Egypt Soc Parasitol; 2010 Dec; 40(3):565-74. PubMed ID: 21268527 [TBL] [Abstract][Full Text] [Related]
52. Evaluation of Trebon (ethofenprox) for insecticidal efficacy against mosquito larvae and on non-target organisms. Baktharatchagan R; David BV Indian J Malariol; 1991 Dec; 28(4):249-53. PubMed ID: 1824360 [TBL] [Abstract][Full Text] [Related]
53. Efficacy of 4-methyl-7-hydroxy coumarin derivatives against vectors Aedes aegypti and Culex quinquefasciatus. Deshmukh M; Pawar P; Joseph M; Phalgune U; Kashalkar R; Deshpande NR Indian J Exp Biol; 2008 Nov; 46(11):788-92. PubMed ID: 19090351 [TBL] [Abstract][Full Text] [Related]
54. Laboratory evaluation of dimilin on growth and glutathione activity in mosquitofish, a non-target species. Draredja-Beldi H; Soltani N Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):299-305. PubMed ID: 15149123 [TBL] [Abstract][Full Text] [Related]
55. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Bassolé IH; Guelbeogo WM; Nébié R; Costantini C; Sagnon N; Kabore ZI; Traoré SA Parassitologia; 2003 Mar; 45(1):23-6. PubMed ID: 15270540 [TBL] [Abstract][Full Text] [Related]
56. Efficacy of three formulations of diflubenzuron, an insect growth regulator, against Culex quinquefasciatus Say, the vector of Bancroftian filariasis in India. Sadanandane C; Boopathi Doss PS; Jambulingam P Indian J Med Res; 2012 Nov; 136(5):783-91. PubMed ID: 23287125 [TBL] [Abstract][Full Text] [Related]
57. BVA 2 mosquito larvicide--a new surface oil larvicide for mosquito control. Floore TG; Dukes JC; Cuda JP; Schreiber ET; Greer MJ J Am Mosq Control Assoc; 1998 Jun; 14(2):196-9. PubMed ID: 9673922 [TBL] [Abstract][Full Text] [Related]
58. Differential predation of the planarian Dugesia tigrina on two mosquito species under laboratory conditions. Melo AS; Andrade CF J Am Mosq Control Assoc; 2001 Mar; 17(1):81-3. PubMed ID: 11345426 [TBL] [Abstract][Full Text] [Related]
59. Assessment of selected larvicides for the control of Culex pipiens biotype pipiens and Culex pipiens biotype molestus under laboratory and semi-field conditions. Rumbos CI; Athanassiou CG Pest Manag Sci; 2020 Nov; 76(11):3568-3576. PubMed ID: 32533802 [TBL] [Abstract][Full Text] [Related]
60. Use of hexaflumuron, an insect growth regulator in the control of Aedes albopictus (Skuse). Montada D; Rajavel AR; Vasuki V Southeast Asian J Trop Med Public Health; 1994 Jun; 25(2):374-7. PubMed ID: 7855660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]