BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8952408)

  • 1. [Comparative gene mapping and human karyotype evolution].
    Hirai M; Suto Y
    Tanpakushitsu Kakusan Koso; 1996 Nov; 41(15 Suppl):2441-9. PubMed ID: 8952408
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on karyotype evolution in higher primates in relation to human chromosome 14 and 9 by comparative mapping of immunoglobulin C epsilon genes with fluorescence in situ hybridization.
    Tanabe H
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999; (117):77-90. PubMed ID: 10859938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization.
    Bigoni F; Stanyon R; Koehler U; Morescalchi AM; Wienberg J
    Am J Primatol; 1997; 42(4):289-98. PubMed ID: 9261510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Karyotypic evolution pathways in medulloblastoma/primitive neuroectodermal tumor determined with a combination of spectral karyotyping, G-banding, and fluorescence in situ hybridization.
    Cohen N; Betts DR; Tavori U; Toren A; Ram T; Constantini S; Grotzer MA; Amariglio N; Rechavi G; Trakhtenbrot L
    Cancer Genet Cytogenet; 2004 Feb; 149(1):44-52. PubMed ID: 15104282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A classification efficiency test of spectral karyotyping and multiplex fluorescence in situ hybridization: identification of chromosome homologies between Homo sapiens and Hylobates leucogenys.
    Rens W; Yang F; O'Brien PC; Solanky N; Ferguson-Smith MA
    Genes Chromosomes Cancer; 2001 May; 31(1):65-74. PubMed ID: 11284037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction to the analysis of the human G-banded karyotype.
    Swansbury J
    Methods Mol Biol; 2003; 220():259-69. PubMed ID: 12744219
    [No Abstract]   [Full Text] [Related]  

  • 8. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization.
    Dumas F; Bigoni F; Stone G; Sineo L; Stanyon R
    Chromosome Res; 2005; 13(1):85-96. PubMed ID: 15791414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The latest achievements of radiation cytogenetics in connection with the discovery of the method for the fluorescence hybridization in situ of the metaphase chromosomes of man and experimental animals using DNA probes (FISH)].
    Pilinskaia MA
    Tsitol Genet; 1996; 30(4):70-85. PubMed ID: 9005640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic hybridization and fluorescence in situ hybridization in chronic lymphocytic leukemia.
    Jarosova M
    Methods Mol Med; 2004; 97():145-57. PubMed ID: 15064491
    [No Abstract]   [Full Text] [Related]  

  • 11. Karyotyping lymph node biopsies in non-Hodgkin's lymphoma.
    Ross FM; Harrison CJ
    Methods Mol Med; 2005; 115():93-107. PubMed ID: 15998964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonisotopic in situ hybridization. Gene mapping and cytogenetics.
    Bhatt B; Sahinoglu T; Stevens C
    Methods Mol Biol; 1998; 80():405-17. PubMed ID: 9664397
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization.
    Tosi S; Giudici G; Rambaldi A; Scherer SW; Bray-Ward P; Dirscherl L; Biondi A; Kearney L
    Genes Chromosomes Cancer; 1999 Mar; 24(3):213-21. PubMed ID: 10451701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications.
    Ferguson-Smith MA
    Eur J Hum Genet; 1997; 5(5):253-65. PubMed ID: 9412781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cytogenetic analysis of a nontumorigenic human breast epithelial cell line that eventually turns tumorigenic: validation of an analytical approach combining karyotyping, comparative genomic hybridization, chromosome painting, and single-locus fluorescence in situ hybridization.
    Nielsen KV; Niebuhr E; Ejlertsen B; Holstebroe S; Madsen MW; Briand P; Mouridsen HT; Bolund L
    Genes Chromosomes Cancer; 1997 Sep; 20(1):30-7. PubMed ID: 9290951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of chromosome aberrations. In situ hybridization.
    Lichter P; Ried T
    Methods Mol Biol; 1994; 29():449-78. PubMed ID: 8032422
    [No Abstract]   [Full Text] [Related]  

  • 17. Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype.
    Hameister H; Klett C; Bruch J; Dixkens C; Vogel W; Christensen K
    Chromosome Res; 1997 Feb; 5(1):5-11. PubMed ID: 9088638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids.
    Frönicke L; Wienberg J
    Mamm Genome; 2001 Jun; 12(6):442-9. PubMed ID: 11353391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiling and gene copy-number changes in malignant mesothelioma cell lines.
    Zanazzi C; Hersmus R; Veltman IM; Gillis AJ; van Drunen E; Beverloo HB; Hegmans JP; Verweij M; Lambrecht BN; Oosterhuis JW; Looijenga LH
    Genes Chromosomes Cancer; 2007 Oct; 46(10):895-908. PubMed ID: 17620293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel karyotypic changes detected by comparative genomic hybridization in a case of congenital cervical immature teratoma.
    Miliaras D; Grimbizis G; Conroy J; Psarra N; Miliaras S; Nowak N; Bontis J
    Birth Defects Res A Clin Mol Teratol; 2005 Aug; 73(8):572-6. PubMed ID: 16001440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.