These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 8952460)
1. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A. Beattie BK; Prentice GA; Merrill AR Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas aeruginosa exotoxin A: effects of mutating tyrosine-470 and tyrosine-481 to phenylalanine. Lukac M; Collier RJ Biochemistry; 1988 Oct; 27(20):7629-32. PubMed ID: 2849995 [TBL] [Abstract][Full Text] [Related]
3. A fluorescence investigation of the active site of Pseudomonas aeruginosa exotoxin A. Beattie BK; Merrill AR J Biol Chem; 1999 May; 274(22):15646-54. PubMed ID: 10336461 [TBL] [Abstract][Full Text] [Related]
4. Toward the elucidation of the catalytic mechanism of the mono-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exotoxin A. Armstrong S; Merrill AR Biochemistry; 2004 Jan; 43(1):183-94. PubMed ID: 14705944 [TBL] [Abstract][Full Text] [Related]
5. Active site mutations of Pseudomonas aeruginosa exotoxin A. Analysis of the His440 residue. Han XY; Galloway DR J Biol Chem; 1995 Jan; 270(2):679-84. PubMed ID: 7822295 [TBL] [Abstract][Full Text] [Related]
6. Protein-protein interaction using tryptophan analogues: novel spectroscopic probes for toxin-elongation factor-2 interactions. Mohammadi F; Prentice GA; Merrill AR Biochemistry; 2001 Aug; 40(34):10273-83. PubMed ID: 11513605 [TBL] [Abstract][Full Text] [Related]
7. The nature and character of the transition state for the ADP-ribosyltransferase reaction. Jørgensen R; Wang Y; Visschedyk D; Merrill AR EMBO Rep; 2008 Aug; 9(8):802-9. PubMed ID: 18583986 [TBL] [Abstract][Full Text] [Related]
8. An enzyme-linked immunosorbent assay for the association of the catalytic domain of diphthamide-specific ribosyltransferases to eukaryotic elongation factor-2. Prentice GA; Merrill AR Anal Biochem; 1999 Aug; 272(2):216-23. PubMed ID: 10415091 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and immunochemical studies of proteolytic fragments of exotoxin A from Pseudomonas aeruginosa. Bourdenet S; Vacheron MJ; Guinand M; Michel G; Arminjon F Eur J Biochem; 1990 Sep; 192(2):379-85. PubMed ID: 2170123 [TBL] [Abstract][Full Text] [Related]
10. Insight into the catalytic mechanism of Pseudomonas aeruginosa exotoxin A. Studies of toxin interaction with eukaryotic elongation factor-2. Armstrong S; Yates SP; Merrill AR J Biol Chem; 2002 Nov; 277(48):46669-75. PubMed ID: 12270928 [TBL] [Abstract][Full Text] [Related]
11. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A. Yates SP; Merrill AR Biochem J; 2004 May; 379(Pt 3):563-72. PubMed ID: 14733615 [TBL] [Abstract][Full Text] [Related]
13. Structure-function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa. Yates SP; Taylor PL; Jørgensen R; Ferraris D; Zhang J; Andersen GR; Merrill AR Biochem J; 2005 Feb; 385(Pt 3):667-75. PubMed ID: 15458385 [TBL] [Abstract][Full Text] [Related]
14. Structure-function analysis of exotoxin A proteins with mutations at histidine 426. Wick MJ; Cook JM; Iglewski BH Infect Immun; 1992 Mar; 60(3):1128-39. PubMed ID: 1541528 [TBL] [Abstract][Full Text] [Related]
15. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity. Wilson BA; Blanke SR; Reich KA; Collier RJ J Biol Chem; 1994 Sep; 269(37):23296-301. PubMed ID: 8083236 [TBL] [Abstract][Full Text] [Related]
16. Mapping the enzymatic active site of Pseudomonas aeruginosa exotoxin A. Brandhuber BJ; Allured VS; Falbel TG; McKay DB Proteins; 1988; 3(3):146-54. PubMed ID: 3151219 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Li M; Dyda F; Benhar I; Pastan I; Davies DR Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6902-6. PubMed ID: 8692916 [TBL] [Abstract][Full Text] [Related]
18. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. Wedekind JE; Trame CB; Dorywalska M; Koehl P; Raschke TM; McKee M; FitzGerald D; Collier RJ; McKay DB J Mol Biol; 2001 Dec; 314(4):823-37. PubMed ID: 11734000 [TBL] [Abstract][Full Text] [Related]
19. Application of a fluorometric assay for characterization of the catalytic competency of a domain III fragment of Pseudomonas aeruginosa exotoxin A. Armstrong S; Merrill AR Anal Biochem; 2001 May; 292(1):26-33. PubMed ID: 11319814 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas aeruginosa exotoxin A: alterations of biological and biochemical properties resulting from mutation of glutamic acid 553 to aspartic acid. Douglas CM; Collier RJ Biochemistry; 1990 May; 29(21):5043-9. PubMed ID: 1974145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]