BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8952487)

  • 1. Functional role of the active site glutamate-368 in rat short chain acyl-CoA dehydrogenase.
    Battaile KP; Mohsen AW; Vockley J
    Biochemistry; 1996 Dec; 35(48):15356-63. PubMed ID: 8952487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of human isovaleryl-CoA dehydrogenase at 2.6 A resolution: structural basis for substrate specificity,
    Tiffany KA; Roberts DL; Wang M; Paschke R; Mohsen AW; Vockley J; Kim JJ
    Biochemistry; 1997 Jul; 36(28):8455-64. PubMed ID: 9214289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium-long-chain chimeric human Acyl-CoA dehydrogenase: medium-chain enzyme with the active center base arrangement of long-chain Acyl-CoA dehydrogenase.
    Nandy A; Kieweg V; Kräutle FG; Vock P; Küchler B; Bross P; Kim JJ; Rasched I; Ghisla S
    Biochemistry; 1996 Sep; 35(38):12402-11. PubMed ID: 8823175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
    Lee HJ; Wang M; Paschke R; Nandy A; Ghisla S; Kim JJ
    Biochemistry; 1996 Sep; 35(38):12412-20. PubMed ID: 8823176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of acyl-CoA dehydrogenase catalytic residue mutants using surface plasmon resonance and circular dichroism.
    Goetzman ES; He M; Nguyen TV; Vockley J
    Mol Genet Metab; 2006 Mar; 87(3):233-42. PubMed ID: 16376132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Caenorhabditis elegans isovaleryl-CoA dehydrogenase and structural comparison with other acyl-CoA dehydrogenases.
    Mohsen AW; Navarette B; Vockley J
    Mol Genet Metab; 2001 Jun; 73(2):126-37. PubMed ID: 11386848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based inhibitor discrimination in the acyl-CoA dehydrogenases.
    Schaller RA; Mohsen AW; Vockley J; Thorpe C
    Biochemistry; 1997 Jun; 36(25):7761-8. PubMed ID: 9201918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and purification of His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase wild-type and Arg256 mutant proteins.
    Zeng J; Li D
    Protein Expr Purif; 2004 Oct; 37(2):472-8. PubMed ID: 15358373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine 387 of human isovaleryl-CoA dehydrogenase plays a crucial role in substrate/product binding.
    Volchenboum SL; Mohsen AW; Kim JJ; Vockley J
    Mol Genet Metab; 2001; 74(1-2):226-37. PubMed ID: 11592819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction.
    Peterson KL; Galitz DS; Srivastava DK
    Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of the mouse short-chain acyl-CoA dehydrogenase cDNA.
    Kelly CL; Hinsdale ME; Wood PA
    Genomics; 1993 Oct; 18(1):137-40. PubMed ID: 8276399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the catalytic base in long chain acyl-CoA dehydrogenase.
    Djordjevic S; Dong Y; Paschke R; Frerman FE; Strauss AW; Kim JJ
    Biochemistry; 1994 Apr; 33(14):4258-64. PubMed ID: 8155643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase.
    Hofstein HA; Feng Y; Anderson VE; Tonge PJ
    Biochemistry; 1999 Jul; 38(29):9508-16. PubMed ID: 10413528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a cDNA for short/branched chain acyl-Coenzyme A dehydrogenase from rat and characterization of its tissue expression and substrate specificity.
    Willard J; Vicanek C; Battaile KP; Van Veldhoven PP; Fauq AH; Rozen R; Vockley J
    Arch Biochem Biophys; 1996 Jul; 331(1):127-33. PubMed ID: 8660691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Deng H; Yang SY
    Biochemistry; 1997 Jan; 36(1):261-8. PubMed ID: 8993342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox properties of human medium-chain acyl-CoA dehydrogenase, modulation by charged active-site amino acid residues.
    Mancini-Samuelson GJ; Kieweg V; Sabaj KM; Ghisla S; Stankovich MT
    Biochemistry; 1998 Oct; 37(41):14605-12. PubMed ID: 9772189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of an acyl-CoA dehydrogenase from Mycobacterium tuberculosis.
    Mahadevan U; Padmanaban G
    Biochem Biophys Res Commun; 1998 Mar; 244(3):893-7. PubMed ID: 9535763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.