These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8952543)

  • 1. Decreased blood flow rate disrupts endothelial repair in vivo.
    Vyalov S; Langille BL; Gotlieb AI
    Am J Pathol; 1996 Dec; 149(6):2107-18. PubMed ID: 8952543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrosomes, microtubules, and microfilaments in the reendothelialization and remodeling of double-sided in vitro wounds.
    Ettenson DS; Gotlieb AI
    Lab Invest; 1992 Jun; 66(6):722-33. PubMed ID: 1602742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endothelial cytoskeleton: organization in normal and regenerating endothelium.
    Gotlieb AI
    Toxicol Pathol; 1990; 18(4 Pt 1):603-17. PubMed ID: 2091238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo.
    Walpola PL; Gotlieb AI; Langille BL
    Am J Pathol; 1993 May; 142(5):1392-400. PubMed ID: 8494043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin filament organization during endothelial wound healing in the rabbit cornea: comparison between transcorneal freeze and mechanical scrape injuries.
    Ichijima H; Petroll WM; Barry PA; Andrews PM; Dai M; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 1993 Aug; 34(9):2803-12. PubMed ID: 8344802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast growth factor 2 enhances early stages of in vitro endothelial repair by microfilament bundle reorganization and cell elongation.
    Wang DI; Gotlieb AI
    Exp Mol Pathol; 1999 Aug; 66(3):179-90. PubMed ID: 10486236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial wounds with disruption in cell migration repair primarily by cell proliferation.
    Ettenson DS; Gotlieb AI
    Microvasc Res; 1994 Nov; 48(3):328-37. PubMed ID: 7731397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular migration and morphology in corneal endothelial wound repair.
    Matsuda M; Sawa M; Edelhauser HF; Bartels SP; Neufeld AH; Kenyon KR
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):443-9. PubMed ID: 3980166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial adherence under shear stress is dependent upon microfilament reorganization.
    Wechezak AR; Wight TN; Viggers RF; Sauvage LR
    J Cell Physiol; 1989 Apr; 139(1):136-46. PubMed ID: 2708451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro reendothelialization of a single-cell wound. Role of microfilament bundles in rapid lamellipodia-mediated wound closure.
    Wong MK; Gotlieb AI
    Lab Invest; 1984 Jul; 51(1):75-81. PubMed ID: 6376946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Fluorouracil interferes with actin organization, stress fiber formation and cell migration in corneal endothelial cells during wound repair along the natural basement membrane.
    Gordon SR; Climie M; Hitt AL
    Cell Motil Cytoskeleton; 2005 Dec; 62(4):244-58. PubMed ID: 16283632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean (Glycine max) agglutinin binds to corneal endothelial cells during wound repair and alters their microfilament pattern.
    Gordon SR; Wood M
    Cell Mol Biol (Noisy-le-grand); 1997 May; 43(3):329-36. PubMed ID: 9193787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of cytoskeletal reorganization stimulates actin and tubulin syntheses during injury-induced cell migration in the corneal endothelium.
    Gordon SR; Buxar RM
    J Cell Biochem; 1997 Dec; 67(3):409-21. PubMed ID: 9361195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition of aortic endothelial cells from resting to migrating cells is associated with three sequential patterns of microfilament organization.
    Lee TY; Rosenthal A; Gotlieb AI
    J Vasc Res; 1996; 33(1):13-24. PubMed ID: 8603122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft.
    Inoguchi H; Tanaka T; Maehara Y; Matsuda T
    Biomaterials; 2007 Jan; 28(3):486-95. PubMed ID: 17034847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZO-1 reorganization and myofibroblast transformation of corneal endothelial cells after freeze injury in the cat.
    Petroll WM; Barry-Lane PA; Cavanagh HD; Jester JV
    Exp Eye Res; 1997 Feb; 64(2):257-67. PubMed ID: 9176060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfilaments and microtubules maintain endothelial integrity.
    Lee TY; Gotlieb AI
    Microsc Res Tech; 2003 Jan; 60(1):115-27. PubMed ID: 12500268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of endothelial denudation in flow-induced arterial dilatation.
    Masuda H; Kawamura K; Sugiyama T; Kamiya A
    Front Med Biol Eng; 1993; 5(1):57-62. PubMed ID: 8323884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubules regulate aortic endothelial cell actin microfilament reorganization in intact and repairing monolayers.
    Lee JS; Gotlieb AI
    Histol Histopathol; 2005 Apr; 20(2):455-65. PubMed ID: 15736050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.