These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8952931)

  • 21. Non-cancer health risk assessment from exposure to cyanide by resident adults from the mining operations of Bogoso Gold Limited in Ghana.
    Obiri S; Dodoo DK; Okai-Sam F; Essumang DK
    Environ Monit Assess; 2006 Jul; 118(1-3):51-63. PubMed ID: 16897533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of phosphate from aqueous solution with blast furnace slag.
    Oguz E
    J Hazard Mater; 2004 Oct; 114(1-3):131-7. PubMed ID: 15511583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of ammonia and volatile phenols as primary toxicants in a coal gasification effluent.
    Jin H; Yang X; Yu H; Yin D
    Bull Environ Contam Toxicol; 1999 Sep; 63(3):399-406. PubMed ID: 10475920
    [No Abstract]   [Full Text] [Related]  

  • 24. Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits.
    Mansfeldt T; Dohrmann R
    J Environ Qual; 2001; 30(6):1927-32. PubMed ID: 11789998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From single-substance evaluation to ecological process concept: the dilemma of processing gold with cyanide.
    Korte F; Coulston F
    Ecotoxicol Environ Saf; 1995 Oct; 32(1):96-101. PubMed ID: 8565884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blast furnace slags as sorbents of phosphate from water solutions.
    Kostura B; Kulveitová H; Lesko J
    Water Res; 2005 May; 39(9):1795-802. PubMed ID: 15899277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Toxicity identification evaluation on efficiency of chemical effluent treatment].
    Yang Y; Yu H; Cui Y; Jin H; Tang S; Zhou C
    Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):105-9. PubMed ID: 12722450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Determination of cyanide ion in the atmosphere, drinking water, industrial effluents and biologic media by means of a specific electrode].
    Collombel C; Durand JP; Bureau J; Cotte J
    Eur J Toxicol; 1970 Sep; 3(5):291-9. PubMed ID: 4329089
    [No Abstract]   [Full Text] [Related]  

  • 29. Microbial cyanide sensor for monitoring river water.
    Ikebukuro K; Miyata A; Cho SJ; Nomura Y; Chang SM; Yamauchi Y; Hasebe Y; Uchiyama S; Karube I
    J Biotechnol; 1996 Jul; 48(1-2):73-80. PubMed ID: 8818274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.
    Yin NH; Sivry Y; Guyot F; Lens PN; van Hullebusch ED
    J Environ Manage; 2016 Sep; 180():310-23. PubMed ID: 27240207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of toxicity identification evaluation procedures to an effluent from a nitrogenous fertilizer plant in China.
    Yu H; Shang H; Xu T; Cui Y; Yang L; Jin H; Wang L
    Ecotoxicol Environ Saf; 2003 Jun; 55(2):223-6. PubMed ID: 12742372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity reduction evaluation, toxicity identification evaluation and toxicity tracking in direct toxicity assessment.
    Hutchings M; Johnson I; Hayes E; Girling AE; Thain J; Thomas K; Benstead R; Whale G; Wordon J; Maddox R; Chown P
    Ecotoxicology; 2004 Jul; 13(5):475-84. PubMed ID: 15462138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of industrial and domestic wastewaters on selected biological indicators in aquatic organisms.
    Bankston CR; Baer KN
    Bull Environ Contam Toxicol; 2005 Jul; 75(1):73-80. PubMed ID: 16228875
    [No Abstract]   [Full Text] [Related]  

  • 34. Ferrate(VI) oxidation of weak-acid dissociable cyanides.
    Yngard RA; Sharma VK; Filip J; Zboril R
    Environ Sci Technol; 2008 Apr; 42(8):3005-10. PubMed ID: 18497158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions.
    Tiwari D; Kim HU; Choi BJ; Lee SM; Kwon OH; Choi KM; Yang JK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 May; 42(6):803-10. PubMed ID: 17474007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal Concentrations and Responses of Chironomid Larvae Exposed to Thailand Pulp and Paper Mill Effluent.
    Tokhun N; Iwai CB; Noller BN
    Bull Environ Contam Toxicol; 2017 Nov; 99(5):548-554. PubMed ID: 28887649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of cyanide ion by the reaction of phenol with nitrous acid in wastewater.
    Adachi A; Okano T
    Chemosphere; 2003 May; 51(5):441-3. PubMed ID: 12598009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper and nickel effects on survival and growth of northern leopard frog (Lithobates pipiens) tadpoles in field-collected smelting effluent water.
    Leduc J; Echaubard P; Trudeau V; Lesbarrères D
    Environ Toxicol Chem; 2016 Mar; 35(3):687-94. PubMed ID: 26329298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecotoxicity of cyanide complexes in industrially contaminated soils.
    Manar R; Bonnard M; Rast C; Veber AM; Vasseur P
    J Hazard Mater; 2011 Dec; 197():369-77. PubMed ID: 22018867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae.
    Myllynen K; Ojutkangas E; Nikinmaa M
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):43-8. PubMed ID: 9056399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.