These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 8953144)
1. Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatite, and hydroxyapatite-glass composite. Suominen E; Aho AJ; Vedel E; Kangasniemi I; Uusipaikka E; Yli-Urpo A J Biomed Mater Res; 1996 Dec; 32(4):543-51. PubMed ID: 8953144 [TBL] [Abstract][Full Text] [Related]
2. Porous bioactive glass matrix in reconstruction of articular osteochondral defects. Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567 [TBL] [Abstract][Full Text] [Related]
3. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Heikkilä JT; Aho AJ; Yli-Urpo A; Andersson OH; Aho HJ; Happonen RP Acta Orthop Scand; 1993 Dec; 64(6):678-82. PubMed ID: 8291417 [TBL] [Abstract][Full Text] [Related]
4. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Heikkilä JT; Aho AJ; Kangasniemi I; Yli-Urpo A Biomaterials; 1996 Sep; 17(18):1755-60. PubMed ID: 8879512 [TBL] [Abstract][Full Text] [Related]
5. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material. Guo T; Tian X; Li B; Yang T; Li Y J Orthop Surg Res; 2017 Nov; 12(1):176. PubMed ID: 29141674 [TBL] [Abstract][Full Text] [Related]
6. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Tamai N; Myoui A; Hirao M; Kaito T; Ochi T; Tanaka J; Takaoka K; Yoshikawa H Osteoarthritis Cartilage; 2005 May; 13(5):405-17. PubMed ID: 15882564 [TBL] [Abstract][Full Text] [Related]
7. In vivo model for frontal sinus and calvarial bone defect obliteration with bioactive glass S53P4 and hydroxyapatite. Peltola MJ; Aitasalo KM; Suonpää JT; Yli-Urpo A; Laippala PJ J Biomed Mater Res; 2001 May; 58(3):261-9. PubMed ID: 11319739 [TBL] [Abstract][Full Text] [Related]
8. In vivo outcomes of tissue-engineered osteochondral grafts. Bal BS; Rahaman MN; Jayabalan P; Kuroki K; Cockrell MK; Yao JQ; Cook JL J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):164-74. PubMed ID: 20091911 [TBL] [Abstract][Full Text] [Related]
9. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057 [No Abstract] [Full Text] [Related]
10. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique]. Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012 [TBL] [Abstract][Full Text] [Related]
11. [RELATIONSHIP BETWEEN SUBCHONDRAL BONE RECONSTRUCTION AND ARTICULAR CARTILAGE REGENERATION IN A RABBIT MODEL OF SPONTANEOUS OSTEOCHONDRAL REPAIR]. Wang Y; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jun; 28(6):681-6. PubMed ID: 26455217 [TBL] [Abstract][Full Text] [Related]
12. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056 [TBL] [Abstract][Full Text] [Related]
13. Healing of osteochondral osteotomies after fixation with a hydroxyapatite-buffered polylactide. A histomorphometric and radiographic study in rabbits. Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ Biomed Mater Eng; 2002; 12(3):259-70. PubMed ID: 12446941 [TBL] [Abstract][Full Text] [Related]
14. Biomaterial scaffolds in cartilage-subchondral bone defects influencing the repair of autologous articular cartilage transplants. Fan W; Wu C; Miao X; Liu G; Saifzadeh S; Sugiyama S; Afara I; Crawford R; Xiao Y J Biomater Appl; 2013 May; 27(8):979-89. PubMed ID: 22684516 [TBL] [Abstract][Full Text] [Related]
15. Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. Salonius E; Muhonen V; Lehto K; Järvinen E; Pyhältö T; Hannula M; Aula AS; Uppstu P; Haaparanta AM; Rosling A; Kellomäki M; Kiviranta I J Tissue Eng Regen Med; 2019 Mar; 13(3):406-415. PubMed ID: 30644174 [TBL] [Abstract][Full Text] [Related]
16. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Heikkilä JT; Aho HJ; Yli-Urpo A; Happonen RP; Aho AJ Acta Orthop Scand; 1995 Oct; 66(5):463-7. PubMed ID: 7484131 [TBL] [Abstract][Full Text] [Related]
17. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model. Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938 [TBL] [Abstract][Full Text] [Related]
18. [Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells]. Liu M; Xiang Z; Pei F; Huang F; Cen S; Zhong G; Fan H; Xiao Y; Sun J; Gao Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jan; 24(1):87-93. PubMed ID: 20135980 [TBL] [Abstract][Full Text] [Related]
19. Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute. Lin FH; Lin CC; Liu HC; Huang YY; Wang CY; Lu CM Biomaterials; 1994 Oct; 15(13):1087-98. PubMed ID: 7888580 [TBL] [Abstract][Full Text] [Related]