These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 8953144)
21. Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). Maehara H; Sotome S; Yoshii T; Torigoe I; Kawasaki Y; Sugata Y; Yuasa M; Hirano M; Mochizuki N; Kikuchi M; Shinomiya K; Okawa A J Orthop Res; 2010 May; 28(5):677-86. PubMed ID: 19918893 [TBL] [Abstract][Full Text] [Related]
22. Hydroxyapatite-glass composite as a bone substitute in large metaphyseal cavities in rabbits. Suominen EA; Aho AJ; Juhanoja J; Yli-Urpo A Int Orthop; 1995; 19(3):167-73. PubMed ID: 7558493 [TBL] [Abstract][Full Text] [Related]
23. Clinical Study of Autologous Cartilage Transplantation Based on Nano-Hydroxyapatite in the Treatment of Talar Osteochondral Injury. Wang W; Wang X; Wang Y; Tong C J Nanosci Nanotechnol; 2021 Feb; 21(2):1250-1258. PubMed ID: 33183469 [TBL] [Abstract][Full Text] [Related]
24. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study. Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624 [TBL] [Abstract][Full Text] [Related]
25. Histological evaluation of the effects of bioglass, hydroxyapatite, or demineralized freeze-dried bone, grafted alone or as composites, on the healing of tibial defects in rabbits. Kucukkolbasi H; Mutlu N; Isik K; Celik I; Oznurlu Y Saudi Med J; 2009 Mar; 30(3):329-33. PubMed ID: 19271058 [TBL] [Abstract][Full Text] [Related]
26. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related]
27. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. van Susante JL; Buma P; Homminga GN; van den Berg WB; Veth RP Biomaterials; 1998 Dec; 19(24):2367-74. PubMed ID: 9884051 [TBL] [Abstract][Full Text] [Related]
28. Bioactivity of bioresorbable osteosynthetic devices made of hydroxyapatite/poly-DL-lactide composites: an experimental study. Zheng Q; Guo X; Du J; Liu Y Chin Med Sci J; 2001 Sep; 16(3):141-6. PubMed ID: 12899325 [TBL] [Abstract][Full Text] [Related]
29. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624 [TBL] [Abstract][Full Text] [Related]
30. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Chen T; Bai J; Tian J; Huang P; Zheng H; Wang J Colloids Surf B Biointerfaces; 2018 Jul; 167():354-363. PubMed ID: 29689491 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. Bi L; Jung S; Day D; Neidig K; Dusevich V; Eick D; Bonewald L J Biomed Mater Res A; 2012 Dec; 100(12):3267-75. PubMed ID: 22733586 [TBL] [Abstract][Full Text] [Related]
32. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Taniyama T; Masaoka T; Yamada T; Wei X; Yasuda H; Yoshii T; Kozaka Y; Takayama T; Hirano M; Okawa A; Sotome S Artif Organs; 2015 Jun; 39(6):529-35. PubMed ID: 25865039 [TBL] [Abstract][Full Text] [Related]
33. Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone. Välimäki VV; Moritz N; Yrjans JJ; Dalstra M; Aro HT Biomaterials; 2005 Nov; 26(33):6693-703. PubMed ID: 15941582 [TBL] [Abstract][Full Text] [Related]
34. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991 [TBL] [Abstract][Full Text] [Related]
35. Frontal sinus and skull bone defect obliteration with three synthetic bioactive materials. A comparative study. Peltola MJ; Aitasalo KM; Suonpää JT; Yli-Urpo A; Laippala PJ; Forsback AP J Biomed Mater Res B Appl Biomater; 2003 Jul; 66(1):364-72. PubMed ID: 12808596 [TBL] [Abstract][Full Text] [Related]
36. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit. Sotoudeh A; Jahanshahi A; Takhtfooladi MA; Bazazan A; Ganjali A; Harati MP Acta Cir Bras; 2013 May; 28(5):340-5. PubMed ID: 23702935 [TBL] [Abstract][Full Text] [Related]
37. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Kon E; Filardo G; Di Martino A; Busacca M; Moio A; Perdisa F; Marcacci M Am J Sports Med; 2014 Jan; 42(1):158-65. PubMed ID: 24114751 [TBL] [Abstract][Full Text] [Related]
38. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Malmström J; Adolfsson E; Arvidsson A; Thomsen P Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331 [TBL] [Abstract][Full Text] [Related]
39. Hyaluronan-based polymers in the treatment of osteochondral defects. Solchaga LA; Yoo JU; Lundberg M; Dennis JE; Huibregtse BA; Goldberg VM; Caplan AI J Orthop Res; 2000 Sep; 18(5):773-80. PubMed ID: 11117300 [TBL] [Abstract][Full Text] [Related]
40. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Kwon SY; Kim YS; Woo YK; Kim SS; Park JB Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]