These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 8953144)
41. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Shao X; Goh JC; Hutmacher DW; Lee EH; Zigang G Tissue Eng; 2006 Jun; 12(6):1539-51. PubMed ID: 16846350 [TBL] [Abstract][Full Text] [Related]
43. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
44. Combined Treatment Effects Using Bioactive-Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model. Preethanath RS; Rajesh P; Varma H; Anil S; Jansen JA; van den Beucken JJ Clin Implant Dent Relat Res; 2016 Aug; 18(4):666-77. PubMed ID: 26115085 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. Zhang Y; Cui X; Zhao S; Wang H; Rahaman MN; Liu Z; Huang W; Zhang C ACS Appl Mater Interfaces; 2015 Feb; 7(4):2393-403. PubMed ID: 25591177 [TBL] [Abstract][Full Text] [Related]
46. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect. Wang G; Yang H; Li M; Lu S; Chen X; Cai X J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332 [TBL] [Abstract][Full Text] [Related]
48. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4. Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880 [TBL] [Abstract][Full Text] [Related]
49. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite. Liao J; Li Y; Zou Q; Duan X; Yang Z; Xie Y; Liu H Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():285-91. PubMed ID: 27040221 [TBL] [Abstract][Full Text] [Related]
50. Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes. Jiang G; Shi D J Biomed Mater Res; 1998; 43(1):77-81. PubMed ID: 9509347 [TBL] [Abstract][Full Text] [Related]
51. Microporosity enhances bioactivity of synthetic bone graft substitutes. Hing KA; Annaz B; Saeed S; Revell PA; Buckland T J Mater Sci Mater Med; 2005 May; 16(5):467-75. PubMed ID: 15875258 [TBL] [Abstract][Full Text] [Related]
52. Comparative performance of three ceramic bone graft substitutes. Hing KA; Wilson LF; Buckland T Spine J; 2007; 7(4):475-90. PubMed ID: 17630146 [TBL] [Abstract][Full Text] [Related]
53. Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Frenkel SR; Bradica G; Brekke JH; Goldman SM; Ieska K; Issack P; Bong MR; Tian H; Gokhale J; Coutts RD; Kronengold RT Osteoarthritis Cartilage; 2005 Sep; 13(9):798-807. PubMed ID: 15967685 [TBL] [Abstract][Full Text] [Related]
54. High resolution MRI imaging at 9.4 Tesla of the osteochondral unit in a translational model of articular cartilage repair. Goebel L; Müller A; Bücker A; Madry H BMC Musculoskelet Disord; 2015 Apr; 16():91. PubMed ID: 25888208 [TBL] [Abstract][Full Text] [Related]
55. Experimental results of donor site filling for autologous osteochondral mosaicplasty. Feczkó P; Hangody L; Varga J; Bartha L; Diószegi Z; Bodó G; Kendik Z; Módis L Arthroscopy; 2003 Sep; 19(7):755-61. PubMed ID: 12966384 [TBL] [Abstract][Full Text] [Related]
56. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
57. S53P4 bioactive glass and fibrin glue for the treatment of osteochondral lesions of the knee - a preliminary in vivo study in rabbits. Zazgyva AM; Gurzu S; Jung I; Nagy Ö; Mühlfay G; Pop TS Rom J Morphol Embryol; 2015; 56(3):1085-90. PubMed ID: 26662143 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. Cui X; Huang W; Zhang Y; Huang C; Yu Z; Wang L; Liu W; Wang T; Zhou J; Wang H; Zhou N; Wang D; Pan H; Rahaman MN Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():585-595. PubMed ID: 28183648 [TBL] [Abstract][Full Text] [Related]
59. Hydroxyapatite-alumina composites and bone-bonding. Li J; Fartash B; Hermansson L Biomaterials; 1995 Mar; 16(5):417-22. PubMed ID: 7662828 [TBL] [Abstract][Full Text] [Related]
60. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold. Dinarvand P; Seyedjafari E; Shafiee A; Jandaghi AB; Doostmohammadi A; Fathi MH; Farhadian S; Soleimani M ACS Appl Mater Interfaces; 2011 Nov; 3(11):4518-24. PubMed ID: 21999213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]