These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 8953216)
21. Identification of amino acids in lac repressor protein cross-linked to operator DNA specifically substituted with bromodeoxyuridine. Allen TD; Wick KL; Matthews KS J Biol Chem; 1991 Apr; 266(10):6113-9. PubMed ID: 2007569 [TBL] [Abstract][Full Text] [Related]
22. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator. Slijper M; Bonvin AM; Boelens R; Kaptein R J Mol Biol; 1996 Jun; 259(4):761-73. PubMed ID: 8683581 [TBL] [Abstract][Full Text] [Related]
23. Hinge-helix formation and DNA bending in various lac repressor-operator complexes. Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559 [TBL] [Abstract][Full Text] [Related]
24. Backbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA methylphosphotriester repair domain of Escherichia coli Ada using NMR. Habazettl J; Myers LC; Yuan F; Verdine GL; Wagner G Biochemistry; 1996 Jul; 35(29):9335-48. PubMed ID: 8755711 [TBL] [Abstract][Full Text] [Related]
25. Internal mobility of reactive-site-hydrolyzed recombinant Cucurbita maxima trypsin inhibitor-V characterized by NMR spectroscopy: evidence for differential stabilization of newly formed C- and N-termini. Liu J; Prakash O; Huang Y; Wen L; Wen JJ; Huang JK; Krishnamoorthi R Biochemistry; 1996 Sep; 35(38):12503-10. PubMed ID: 8823186 [TBL] [Abstract][Full Text] [Related]
26. 13C NMR studies of the molecular dynamics of selectively 13C-enriched ribonuclease complexes. Hughes LT; Cohen JS; Szabo A; Niu C; Matsuura S Biochemistry; 1984 Sep; 23(19):4390-4. PubMed ID: 6487607 [TBL] [Abstract][Full Text] [Related]
27. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Chuprina VP; Rullmann JA; Lamerichs RM; van Boom JH; Boelens R; Kaptein R J Mol Biol; 1993 Nov; 234(2):446-62. PubMed ID: 8230225 [TBL] [Abstract][Full Text] [Related]
28. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. Remerowski ML; Pepermans HA; Hilbers CW; Van De Ven FJ Eur J Biochem; 1996 Feb; 235(3):629-40. PubMed ID: 8654411 [TBL] [Abstract][Full Text] [Related]
29. Escherichia coli lac repressor-lac operator interaction and the influence of allosteric effectors. Horton N; Lewis M; Lu P J Mol Biol; 1997 Jan; 265(1):1-7. PubMed ID: 8995519 [TBL] [Abstract][Full Text] [Related]
30. Human type-alpha transforming growth factor undergoes slow conformational exchange between multiple backbone conformations as characterized by nitrogen-15 relaxation measurements. Li YC; Montelione GT Biochemistry; 1995 Feb; 34(8):2408-23. PubMed ID: 7873520 [TBL] [Abstract][Full Text] [Related]
31. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping. Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
33. NMR (13)C-relaxation study of base and sugar dynamics in GCAA RNA hairpin tetraloop. Trantírek L; Caha E; Kaderávek P; Fiala R J Biomol Struct Dyn; 2007 Dec; 25(3):243-52. PubMed ID: 17937486 [TBL] [Abstract][Full Text] [Related]
34. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748 [TBL] [Abstract][Full Text] [Related]
35. The roles of residues 5 and 9 of the recognition helix of Lac repressor in lac operator binding. Sartorius J; Lehming N; Kisters-Woike B; von Wilcken-Bergmann B; Müller-Hill B J Mol Biol; 1991 Mar; 218(2):313-21. PubMed ID: 2010911 [TBL] [Abstract][Full Text] [Related]
36. Main-chain dynamics of cardiotoxin II from Taiwan cobra (Naja naja atra) as studied by carbon-13 NMR at natural abundance: delineation of the role of functionally important residues. Lee CS; Kumar TK; Lian LY; Cheng JW; Yu C Biochemistry; 1998 Jan; 37(1):155-64. PubMed ID: 9425035 [TBL] [Abstract][Full Text] [Related]
37. Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation. Duchardt E; Schwalbe H J Biomol NMR; 2005 Aug; 32(4):295-308. PubMed ID: 16211483 [TBL] [Abstract][Full Text] [Related]
38. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate. Withers SG; Madsen NB; Sykes BD Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556 [TBL] [Abstract][Full Text] [Related]
39. lac repressor-lac operator interaction: NMR observations. Nick H; Arndt K; Boschelli F; Jarema MA; Lillis M; Sadler J; Caruthers M; Lu P Proc Natl Acad Sci U S A; 1982 Jan; 79(2):218-22. PubMed ID: 7043455 [TBL] [Abstract][Full Text] [Related]