These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8953435)
21. A comparison of the hinge and near-hinge flow fields of the St Jude medical hemodynamic plus and regent bileaflet mechanical heart valves. Ellis JT; Yoganathan AP J Thorac Cardiovasc Surg; 2000 Jan; 119(1):83-93. PubMed ID: 10612765 [TBL] [Abstract][Full Text] [Related]
22. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves. Goubergrits L; Kertzscher U; Affeld K; Petz C; Stalling D; Hege HC ASAIO J; 2008; 54(1):50-7. PubMed ID: 18204316 [TBL] [Abstract][Full Text] [Related]
27. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Manning KB; Kini V; Fontaine AA; Deutsch S; Tarbell JM Artif Organs; 2003 Sep; 27(9):840-6. PubMed ID: 12940907 [TBL] [Abstract][Full Text] [Related]
28. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Alemu Y; Bluestein D Artif Organs; 2007 Sep; 31(9):677-88. PubMed ID: 17725695 [TBL] [Abstract][Full Text] [Related]
29. Characterization of an artificial valve flow using the numerical dye washout visualization technique: application to the monoleaflet valve with purged flow. Goubergrits L; Timmel T; Affeld K; Petz C; Stalling D; Hege HC Artif Organs; 2006 Aug; 30(8):642-50. PubMed ID: 16911322 [TBL] [Abstract][Full Text] [Related]
30. The effect of gap width on viscous stresses within the leakage across a bileaflet valve pivot. Travis BR; Andersen ME; Fründ ET J Heart Valve Dis; 2008 May; 17(3):309-16. PubMed ID: 18592928 [TBL] [Abstract][Full Text] [Related]
31. Digital particle image velocimetry investigation of the pulsating flow around a simplified 2-D model of a bileaflet heart valve. Zhao JB; Shi YB; Yeo TJ; Hwang NH J Heart Valve Dis; 2001 Mar; 10(2):239-53. PubMed ID: 11297212 [TBL] [Abstract][Full Text] [Related]
32. An in-vitro technique for assessment of thrombogenicity in mechanical prosthetic cardiac valves: evaluation with a range of valve types. Martin AJ; Christy JR J Heart Valve Dis; 2004 May; 13(3):509-20. PubMed ID: 15222300 [TBL] [Abstract][Full Text] [Related]
33. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. Nobili M; Morbiducci U; Ponzini R; Del Gaudio C; Balducci A; Grigioni M; Maria Montevecchi F; Redaelli A J Biomech; 2008 Aug; 41(11):2539-50. PubMed ID: 18579146 [TBL] [Abstract][Full Text] [Related]
34. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow. Subramanian A; Mu H; Kadambi JR; Wernet MP; Brendzel AM; Harasaki H J Heart Valve Dis; 2000 Sep; 9(5):721-31. PubMed ID: 11041190 [TBL] [Abstract][Full Text] [Related]
35. [A new design of bileaflet heart valve to eliminate the blood flow disturbance]. Zhang Z; Wang Y Zhongguo Yi Liao Qi Xie Za Zhi; 1999 Sep; 23(5):249-51, 257. PubMed ID: 12583067 [TBL] [Abstract][Full Text] [Related]
36. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves. Grigioni M; Daniele C; D'Avenio G; Barbaro V J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734 [TBL] [Abstract][Full Text] [Related]
37. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy. Travis BR; Heinrich RS; Ensley AE; Gibson DE; Hashim S; Yoganathan AP J Heart Valve Dis; 1998 May; 7(3):345-54. PubMed ID: 9651851 [TBL] [Abstract][Full Text] [Related]