BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8953511)

  • 1. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane.
    Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms.
    Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A
    J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion antiport mechanism is involved in transport of lactic acid across intestinal epithelial brush-border membrane.
    Tamai I; Ogihara T; Takanaga H; Maeda H; Tsuji A
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):285-92. PubMed ID: 11018672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-cotransport of pravastatin across intestinal brush-border membrane.
    Tamai I; Takanaga H; Maeda H; Ogihara T; Yoneda M; Tsuji A
    Pharm Res; 1995 Nov; 12(11):1727-32. PubMed ID: 8592677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles.
    Simanjuntak MT; Terasaki T; Tamai I; Tsuji A
    J Pharmacobiodyn; 1991 Sep; 14(9):501-8. PubMed ID: 1779404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression of transporter for beta-lactam antibiotics and dipeptides in Xenopus laevis oocytes injected with messenger RNA from human, rat and rabbit small intestines.
    Tamai I; Tomizawa N; Takeuchi T; Nakayama K; Higashida H; Tsuji A
    J Pharmacol Exp Ther; 1995 Apr; 273(1):26-31. PubMed ID: 7714774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles.
    Friedrich M; Murer H; Berger EG
    Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.
    Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter.
    Yabuuchi H; Tamai I; Sai Y; Tsuji A
    Pharm Res; 1998 Mar; 15(3):411-6. PubMed ID: 9563070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent fluoride transport in intestinal brush border membrane vesicles.
    He H; Ganapathy V; Isales CM; Whitford GM
    Biochim Biophys Acta; 1998 Jul; 1372(2):244-54. PubMed ID: 9675300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of cefdinir uptake by rabbit small intestinal brush-border membrane vesicles.
    Kitagawa S; Sugaya Y; Kaseda Y; Sato S
    J Pharm Pharmacol; 1997 May; 49(5):516-9. PubMed ID: 9178187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.
    Tacnet F; Lauthier F; Ripoche P
    J Physiol; 1993 Jun; 465():57-72. PubMed ID: 8229851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles.
    Schron CM; Washington C; Blitzer BL
    J Clin Invest; 1985 Nov; 76(5):2030-3. PubMed ID: 4056063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular characterization of intestinal absorption of drugs by carrier-mediated transport mechanisms].
    Tamai I
    Yakugaku Zasshi; 1997 Jul; 117(7):415-34. PubMed ID: 9261213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of enalapril by rabbit small intestinal brush-border membrane vesicles.
    Kitagawa S; Takeda J; Sato S
    Biol Pharm Bull; 1999 Jul; 22(7):762-4. PubMed ID: 10443481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the ileal Na+/bile salt co-transporter in brush border membrane vesicles and functional expression in Xenopus laevis oocytes.
    Mullins JG; Beechey RB; Gould GW; Campbell FC; Shirazi-Beechey SP
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):785-90. PubMed ID: 1497617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits.
    Tsuji A; Tamai I; Nakanishi M; Terasaki T; Hamano S
    J Pharm Pharmacol; 1993 Nov; 45(11):996-8. PubMed ID: 7908046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Na+ dependent uridine transport system of rabbit small intestine: studies with mRNA-injected Xenopus laevis oocytes.
    Terasaki T; Kadowaki A; Higashida H; Nakayama K; Tamai I; Tsuji A
    Biol Pharm Bull; 1993 May; 16(5):493-6. PubMed ID: 8364497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.