These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8953557)

  • 1. A method for shape optimization of a hip prosthesis to maximize the fatigue life of the cement.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Med Eng Phys; 1996 Dec; 18(8):647-54. PubMed ID: 8953557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape optimisation of a Charnley prosthesis based on the fatigue notch factor.
    Hedia HS; Barton DC; Fisher J; Ibrahim A
    Biomed Mater Eng; 1996; 6(3):199-217. PubMed ID: 8922265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape optimal design of the stem of a cemented hip prosthesis to minimize stress concentration in the cement layer.
    Yoon YS; Jang GH; Kim YY
    J Biomech; 1989; 22(11-12):1279-84. PubMed ID: 2625429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical shape optimization of hip prosthesis design.
    Huiskes R; Boeklagen R
    J Biomech; 1989; 22(8-9):793-804. PubMed ID: 2613715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress transfer at the femoral bone/bone cement interface as a function of the cement thickness.
    Jansson V; Heimkes B; Zimmer M
    Arch Orthop Trauma Surg; 1993; 112(2):65-8. PubMed ID: 8457413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Three-dimensional finite element analysis responsible to bone cement with customized prosthesis of proximal segmental femur].
    Liu Y; Tu CQ; Li XB; Duan H; Pei FX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Mar; 38(2):324-7. PubMed ID: 17441361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of the femoral component of total hip prostheses with particular reference to the stress in the bone-cement.
    Yettram AL; Wright KW
    J Biomed Eng; 1979 Oct; 1(4):281-5. PubMed ID: 537354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material optimisation of the femoral component of a hip prosthesis based on the fatigue notch fatigue approach.
    Hedia HS; Barton DC; Fisher J
    Biomed Mater Eng; 1997; 7(2):83-98. PubMed ID: 9262822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of elastic modulus of the backing material on the fatigue notch factor and stress.
    Hedia HS; Abdl-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(3-4):141-56. PubMed ID: 11202144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cement on hip stem fixation: a biomechanical study.
    Çelik T; Mutlu İ; Özkan A; Kişioğlu Y
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):349-357. PubMed ID: 28321636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study.
    Al-Jassir FF; Fouad H; Alothman OY
    Biomed Eng Online; 2013 Jan; 12():5. PubMed ID: 23324627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting cement strains near the tip of a cemented femoral component.
    Estok DM; Orr TE; Harris WH
    J Arthroplasty; 1997 Jan; 12(1):40-8. PubMed ID: 9021500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a genetic algorithm for multiobjective design optimization of the femoral stem of a cemented total hip arthroplasty.
    Ishida T; Nishimura I; Tanino H; Higa M; Ito H; Mitamura Y
    Artif Organs; 2011 Apr; 35(4):404-10. PubMed ID: 21332564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.