BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8953571)

  • 1. The characteristics of arginine transport by rat cerebellar and cortical synaptosomes.
    Aldridge CR; Collard KJ
    Neurochem Res; 1996 Dec; 21(12):1539-46. PubMed ID: 8953571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-[3H]nitroarginine and L-[3H]arginine uptake into rat cerebellar synaptosomes: kinetics and pharmacology.
    Rao VL; Butterworth RF
    J Neurochem; 1996 Sep; 67(3):1275-81. PubMed ID: 8752136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acids differentially inhibit the L-[3H]arginine transport and nitric oxide synthase in rat brain synaptosomes.
    Lopes MC; Cardoso SA; Schousboe A; Carvalho AP
    Neurosci Lett; 1994 Nov; 181(1-2):1-4. PubMed ID: 7534888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portacaval shunting and hyperammonemia stimulate the uptake of L-[3H] arginine but not of L-[3H]nitroarginine into rat brain synaptosomes.
    Rao VL; Audet RM; Butterworth RF
    J Neurochem; 1997 Jan; 68(1):337-43. PubMed ID: 8978744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High and low affinity transport of L-arginine in rat brain synaptosomes.
    Tan CH; Ng FH
    Experientia; 1995 Nov; 51(11):1052-4. PubMed ID: 7498443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of nitric oxide as a cellular messenger in brain.
    Collard KJ
    Mol Cell Biochem; 1995; 149-150():249-56. PubMed ID: 8569736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics, pharmacology, and autoradiographic distribution of L-[3H]nitroarginine binding sites in rat cerebellum.
    Rao VL; Butterworth RF
    J Neurochem; 1996 Feb; 66(2):701-9. PubMed ID: 8592142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [3H]L-arginine transport and nitric oxide synthase activity in foetal hypothalamic cultures.
    Wayte J; Buckingham JC; Cowell AM
    Neuroreport; 1996 Dec; 8(1):267-71. PubMed ID: 9051793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The difference in the effect of glutamate and NO synthase inhibitor on free calcium concentration and Na+, K+-ATPase activity in synaptosomes from various brain regions.
    Avrova NF; Shestak KI; Zakharova IO; Sokolova TV; Leont'ev VG
    Neurochem Res; 1999 Sep; 24(9):1101-6. PubMed ID: 10485580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells.
    Smith PA; Sakura H; Coles B; Gummerson N; Proks P; Ashcroft FM
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):625-35. PubMed ID: 9130159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of L-[3H]arginine in cultured neurons: characteristics and inhibition by nitric oxide synthase inhibitors.
    Westergaard N; Beart PM; Schousboe A
    J Neurochem; 1993 Jul; 61(1):364-7. PubMed ID: 7685815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of different calcium channels in K+- and veratridine-induced increases of cytosolic calcium concentration in rat cerebral cortical synaptosomes.
    Meder W; Fink K; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Dec; 356(6):797-805. PubMed ID: 9453466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase.
    Knowles RG; Palacios M; Palmer RM; Moncada S
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5159-62. PubMed ID: 2567995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nitric oxide inhibition on the spread of biotinylated dextran and on extracellular space parameters in the neostriatum of the male rat.
    Jansson A; Mazel T; Andbjer B; Rosén L; Guidolin D; Zoli M; Syková E; Agnati LF; Fuxe K
    Neuroscience; 1999; 91(1):69-80. PubMed ID: 10336061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-arginine uptake in rat cerebral mitochondria.
    Dolińska M; Albrecht J
    Neurochem Int; 1998 Sep; 33(3):233-6. PubMed ID: 9759917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways of nitric oxide production through glutamate receptors in the rat cerebellum in vivo.
    Yamada K; Nabeshima T
    Neurosci Res; 1997 Jun; 28(2):93-102. PubMed ID: 9220466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nicotine-evoked release of 3H-noradrenaline in human cerebral cortex slices.
    Woo RS; Park EY; Shin MS; Jeong MS; Zhao RJ; Shin BS; Kim CJ; Park JW; Kim KW
    Br J Pharmacol; 2002 Dec; 137(7):1063-70. PubMed ID: 12429579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase inhibitors.
    Schmidt K; Klatt P; Mayer B
    Mol Pharmacol; 1993 Sep; 44(3):615-21. PubMed ID: 7690451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substantial regional and hemispheric differences in brain nitric oxide synthase (NOS) inhibition following intracerebroventricular administration of N omega-nitro-L-arginine (L-NA) and its methyl ester (L-NAME).
    Salter M; Duffy C; Garthwaite J; Strijbos PJ
    Neuropharmacology; 1995 Jun; 34(6):639-49. PubMed ID: 7566500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.