BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 8953650)

  • 1. Modeling of serpin-protease complexes: antithrombin-thrombin, alpha 1-antitrypsin (358Met-->Arg)-thrombin, alpha 1-antitrypsin (358Met-->Arg)-trypsin, and antitrypsin-elastase.
    Whisstock J; Lesk AM; Carrell R
    Proteins; 1996 Nov; 26(3):288-303. PubMed ID: 8953650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease.
    Stone SR; Le Bonniec BF
    J Mol Biol; 1997 Jan; 265(3):344-62. PubMed ID: 9018048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for serpin inhibitor activity.
    Wright HT; Scarsdale JN
    Proteins; 1995 Jul; 22(3):210-25. PubMed ID: 7479695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1.
    Wardell MR; Chang WS; Bruce D; Skinner R; Lesk AM; Carrell RW
    Biochemistry; 1997 Oct; 36(42):13133-42. PubMed ID: 9335576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin.
    Bottomley SP; Lawrenson ID; Tew D; Dai W; Whisstock JC; Pike RN
    Protein Sci; 2001 Dec; 10(12):2518-24. PubMed ID: 11714919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full or partial substitution of the reactive center loop of alpha-1-proteinase inhibitor by that of heparin cofactor II: P1 Arg is required for maximal thrombin inhibition.
    Filion ML; Bhakta V; Nguyen LH; Liaw PS; Sheffield WP
    Biochemistry; 2004 Nov; 43(46):14864-72. PubMed ID: 15544357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Lys335 in the metastability and function of inhibitory serpins.
    Im H; Yu MH
    Protein Sci; 2000 May; 9(5):934-41. PubMed ID: 10850803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a serpin-protease complex shows inhibition by deformation.
    Huntington JA; Read RJ; Carrell RW
    Nature; 2000 Oct; 407(6806):923-6. PubMed ID: 11057674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serpin-glycosaminoglycan interactions.
    Rein CM; Desai UR; Church FC
    Methods Enzymol; 2011; 501():105-37. PubMed ID: 22078533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The P6-P2 region of serpins is critical for proteinase inhibition and complex stability.
    Chaillan-Huntington CE; Gettins PG; Huntington JA; Patston PA
    Biochemistry; 1997 Aug; 36(31):9562-70. PubMed ID: 9236002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the local conformational change of alpha1-antitrypsin.
    Baek JH; Im H; Kang UB; Seong KM; Lee C; Kim J; Yu MH
    Protein Sci; 2007 Sep; 16(9):1842-50. PubMed ID: 17660256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation.
    Elliott PR; Abrahams JP; Lomas DA
    J Mol Biol; 1998 Jan; 275(3):419-25. PubMed ID: 9466920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the mechanism of serpin-proteinase inhibition from 2D [1H-15N] NMR studies of the 69 kDa alpha 1-proteinase inhibitor Pittsburgh-trypsin covalent complex.
    Peterson FC; Gettins PG
    Biochemistry; 2001 May; 40(21):6284-92. PubMed ID: 11371190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops.
    Kim S; Woo J; Seo EJ; Yu M; Ryu S
    J Mol Biol; 2001 Feb; 306(1):109-19. PubMed ID: 11178897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the specificity of serpin-protease complexes through interface analysis.
    Rashid Q; Kapil C; Singh P; Kumari V; Jairajpuri MA
    J Biomol Struct Dyn; 2015; 33(6):1352-62. PubMed ID: 25052369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions.
    Schreuder HA; de Boer B; Dijkema R; Mulders J; Theunissen HJ; Grootenhuis PD; Hol WG
    Nat Struct Biol; 1994 Jan; 1(1):48-54. PubMed ID: 7656006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscous drag as the source of active site perturbation during protease translocation: insights into how inhibitory processes are controlled by serpin metastability.
    Shin JS; Yu MH
    J Mol Biol; 2006 Jun; 359(2):378-89. PubMed ID: 16626735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Leu99 of thrombin in determining the P2 specificity of serpins.
    Rezaie AR
    Biochemistry; 1997 Jun; 36(24):7437-46. PubMed ID: 9200692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the connectivity of secondary structure segments in the folding of alpha(1)-antitrypsin.
    Lee C; Seo EJ; Yu MH
    Biochem Biophys Res Commun; 2001 Sep; 287(3):636-41. PubMed ID: 11563842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.