These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 8953712)
1. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Almeida MJ; Pais C Appl Environ Microbiol; 1996 Dec; 62(12):4401-4. PubMed ID: 8953712 [TBL] [Abstract][Full Text] [Related]
2. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Nakagawa S; Ouchi K Appl Environ Microbiol; 1994 Oct; 60(10):3499-502. PubMed ID: 7986027 [TBL] [Abstract][Full Text] [Related]
3. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains. Hernandez-Lopez MJ; Prieto JA; Randez-Gil F Antonie Van Leeuwenhoek; 2003; 84(2):125-34. PubMed ID: 14533716 [TBL] [Abstract][Full Text] [Related]
4. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Teunissen A; Dumortier F; Gorwa MF; Bauer J; Tanghe A; Loïez A; Smet P; Van Dijck P; Thevelein JM Appl Environ Microbiol; 2002 Oct; 68(10):4780-7. PubMed ID: 12324320 [TBL] [Abstract][Full Text] [Related]
6. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Magalhães F; Calton A; Heiniö RL; Gibson B Food Microbiol; 2021 Apr; 94():103640. PubMed ID: 33279066 [TBL] [Abstract][Full Text] [Related]
7. The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Shi X; Miao Y; Chen JY; Chen J; Li W; He X; Wang J Appl Biochem Biotechnol; 2014 Mar; 172(6):3042-53. PubMed ID: 24482281 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough. Hernández-López MJ; Pallotti C; Andreu P; Aguilera J; Prieto JA; Randez-Gil F Int J Food Microbiol; 2007 May; 116(1):103-10. PubMed ID: 17316858 [TBL] [Abstract][Full Text] [Related]
10. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730 [TBL] [Abstract][Full Text] [Related]
11. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114 [TBL] [Abstract][Full Text] [Related]
12. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027 [TBL] [Abstract][Full Text] [Related]
13. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963 [TBL] [Abstract][Full Text] [Related]
14. Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Tanghe A; Van Dijck P; Colavizza D; Thevelein JM Appl Environ Microbiol; 2004 Jun; 70(6):3377-82. PubMed ID: 15184134 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Van Dijck P; Gorwa MF; Lemaire K; Teunissen A; Versele M; Colombo S; Dumortier F; Ma P; Tanghe A; Loiez A; Thevelein JM Int J Food Microbiol; 2000 Apr; 55(1-3):187-92. PubMed ID: 10791742 [TBL] [Abstract][Full Text] [Related]
16. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
17. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs. Kaino T; Tateiwa T; Mizukami-Murata S; Shima J; Takagi H Appl Environ Microbiol; 2008 Sep; 74(18):5845-9. PubMed ID: 18641164 [TBL] [Abstract][Full Text] [Related]
18. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Alfonzo A; Sicard D; Di Miceli G; Guezenec S; Settanni L Food Microbiol; 2021 Apr; 94():103666. PubMed ID: 33279089 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
20. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Hino A; Mihara K; Nakashima K; Takano H Appl Environ Microbiol; 1990 May; 56(5):1386-91. PubMed ID: 2339891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]