BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8953764)

  • 1. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theories of bipedal walking: an odyssey.
    Vaughan CL
    J Biomech; 2003 Apr; 36(4):513-23. PubMed ID: 12600342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computer modeling and simulation of bipedal walking in the Japanese macaque].
    Ogihara N
    Brain Nerve; 2010 Nov; 62(11):1183-92. PubMed ID: 21068455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.
    Ogihara N; Yamazaki N
    Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.
    Wang W; Crompton RH; Carey TS; Günther MM; Li Y; Savage R; Sellers WI
    J Hum Evol; 2004 Dec; 47(6):453-78. PubMed ID: 15566947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive bipedal walking with phasic muscle contraction.
    van der Linde RQ
    Biol Cybern; 1999 Sep; 81(3):227-37. PubMed ID: 10473847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot.
    Wang W; Abboud RJ; Günther MM; Crompton RH
    J Anat; 2014 Aug; 225(2):152-66. PubMed ID: 24925580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neuro-Musculo-Skeletal Model of Human Standing Combining Muscle-Reflex Control and Virtual Model Control.
    Suzuki Y; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5590-5593. PubMed ID: 30441603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2003 Feb; 17(1):1-17. PubMed ID: 12535721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D Dynamic Walking Trajectory Generation for a Bipedal Exoskeleton with Underactuated Legs: A Proof of Concept.
    Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():599-604. PubMed ID: 31374696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of natural arm swing motion in human bipedal walking.
    Park J
    J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.