These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8953764)

  • 1. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theories of bipedal walking: an odyssey.
    Vaughan CL
    J Biomech; 2003 Apr; 36(4):513-23. PubMed ID: 12600342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computer modeling and simulation of bipedal walking in the Japanese macaque].
    Ogihara N
    Brain Nerve; 2010 Nov; 62(11):1183-92. PubMed ID: 21068455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model.
    Ogihara N; Yamazaki N
    Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.
    Wang W; Crompton RH; Carey TS; Günther MM; Li Y; Savage R; Sellers WI
    J Hum Evol; 2004 Dec; 47(6):453-78. PubMed ID: 15566947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive bipedal walking with phasic muscle contraction.
    van der Linde RQ
    Biol Cybern; 1999 Sep; 81(3):227-37. PubMed ID: 10473847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of joint force and torque for the human and non-human ape foot during bipedal walking with implications for the evolution of the foot.
    Wang W; Abboud RJ; Günther MM; Crompton RH
    J Anat; 2014 Aug; 225(2):152-66. PubMed ID: 24925580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neuro-Musculo-Skeletal Model of Human Standing Combining Muscle-Reflex Control and Virtual Model Control.
    Suzuki Y; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5590-5593. PubMed ID: 30441603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2003 Feb; 17(1):1-17. PubMed ID: 12535721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D Dynamic Walking Trajectory Generation for a Bipedal Exoskeleton with Underactuated Legs: A Proof of Concept.
    Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():599-604. PubMed ID: 31374696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of natural arm swing motion in human bipedal walking.
    Park J
    J Biomech; 2008; 41(7):1417-26. PubMed ID: 18417138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.