BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8954075)

  • 1. Studying the active site pocket of Staphylococcus hyicus lipase by site-directed mutagenesis.
    Chang RC; Chen JC; Shaw JF
    Biochem Biophys Res Commun; 1996 Dec; 229(1):6-10. PubMed ID: 8954075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile purification of highly active recombinant Staphylococcus hyicus lipase fragment and characterization of a putative lid region.
    Chang RC; Chen JC; Shaw JF
    Biochem Biophys Res Commun; 1996 Nov; 228(3):774-9. PubMed ID: 8941352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate.
    Mosbah H; Sayari A; Horchani H; Gargouri Y
    Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase of Staphylococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis.
    Jäger S; Demleitner G; Götz F
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):249-54. PubMed ID: 1478461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants.
    Simons JW; van Kampen MD; Ubarretxena-Belandia I; Cox RC; Alves dos Santos CM; Egmond MR; Verheij HM
    Biochemistry; 1999 Jan; 38(1):2-10. PubMed ID: 9890877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression, purification, and characterization of His-tagged Staphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala.
    Mosbah H; Sayari A; Bezzine S; Gargouri Y
    Protein Expr Purif; 2006 Jun; 47(2):516-23. PubMed ID: 16380267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the substrate specificity of staphylococcal lipases.
    van Kampen MD; Verheij HM; Egmond MR
    Biochemistry; 1999 Jul; 38(29):9524-32. PubMed ID: 10413530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of Staphylococcus hyicus lipase and Staphylococcus aureus lipase as studied by in vivo chimeragenesis.
    van Kampen MD; Dekker N; Egmond MR; Verheij HM
    Biochemistry; 1998 Mar; 37(10):3459-66. PubMed ID: 9521667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC; Craig SP; Eakin AE
    Biochemistry; 1998 Mar; 37(10):3491-8. PubMed ID: 9521670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure.
    Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB
    Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase.
    Flachner B; Varga A; Szabó J; Barna L; Hajdú I; Gyimesi G; Závodszky P; Vas M
    Biochemistry; 2005 Dec; 44(51):16853-65. PubMed ID: 16363799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the catalytic mechanism of staphylococcal lipases using carbamate substrates: chain length selectivity, interfacial activation, and cofactor dependence.
    Simons JW; Boots JW; Kats MP; Slotboom AJ; Egmond MR; Verheij HM
    Biochemistry; 1997 Nov; 36(47):14539-50. PubMed ID: 9398172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. His68 and His141 are critical contributors to the intersubunit catalytic site of adenylosuccinate lyase of Bacillus subtilis.
    Lee TT; Worby C; Bao ZQ; Dixon JE; Colman RF
    Biochemistry; 1999 Jan; 38(1):22-32. PubMed ID: 9890879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cloning, expression and characterization of the hypoxanthine-guanine phosphoribosyltransferase mutants from T. tengcongensis].
    You DL; Qu H; Chen Q; Xing Y; Gu XC; Luo M
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Sep; 35(9):853-8. PubMed ID: 12958660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the active site cavity of human pancreatic lipase.
    Colin DY; Deprez-Beauclair P; Allouche M; Brasseur R; Kerfelec B
    Biochem Biophys Res Commun; 2008 Jun; 370(3):394-8. PubMed ID: 18353248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and structural effects of mutations of the catalytic amino-terminal proline in 4-oxalocrotonate tautomerase.
    Czerwinski RM; Johnson WH; Whitman CP
    Biochemistry; 1997 Nov; 36(47):14551-60. PubMed ID: 9398173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pancreatic lipase-related protein type 1: a double mutation restores a significant lipase activity.
    Crenon I; Jayne S; Kerfelec B; Hermoso J; Pignol D; Chapus C
    Biochem Biophys Res Commun; 1998 May; 246(2):513-7. PubMed ID: 9610393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.