BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 8955065)

  • 21. Influenza A virus utilizes noncanonical cap-snatching to diversify its mRNA/ncRNA.
    Li L; Dai H; Nguyen AP; Hai R; Gu W
    RNA; 2020 Sep; 26(9):1170-1183. PubMed ID: 32444459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fig mosaic virus mRNAs show generation by cap-snatching.
    Walia JJ; Falk BW
    Virology; 2012 May; 426(2):162-6. PubMed ID: 22356803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA primers and the role of host nuclear RNA polymerase II in influenza viral RNA transcription.
    Krug RM; Bouloy M; Plotch SJ
    Philos Trans R Soc Lond B Biol Sci; 1980 Feb; 288(1029):359-70. PubMed ID: 6103553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell.
    Yángüez E; Nieto A
    Virus Res; 2011 Mar; 156(1-2):1-12. PubMed ID: 21195735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences.
    Clohisey S; Parkinson N; Wang B; Bertin N; Wise H; Tomoiu A; ; Summers KM; Hendry RW; Carninci P; Forrest ARR; Hayashizaki Y; Digard P; Hume DA; Baillie JK
    J Virol; 2020 May; 94(10):. PubMed ID: 32161175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influenza A virus cap-snatches host RNAs based on their abundance early after infection.
    Sikora D; Rocheleau L; Brown EG; Pelchat M
    Virology; 2017 Sep; 509():167-177. PubMed ID: 28646652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements.
    Duijsings D; Kormelink R; Goldbach R
    EMBO J; 2001 May; 20(10):2545-52. PubMed ID: 11350944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.
    Dias A; Bouvier D; Crépin T; McCarthy AA; Hart DJ; Baudin F; Cusack S; Ruigrok RW
    Nature; 2009 Apr; 458(7240):914-8. PubMed ID: 19194459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription.
    Plotch SJ; Bouloy M; Ulmanen I; Krug RM
    Cell; 1981 Mar; 23(3):847-58. PubMed ID: 6261960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential activation of the influenza virus polymerase via template RNA binding.
    Cianci C; Tiley L; Krystal M
    J Virol; 1995 Jul; 69(7):3995-9. PubMed ID: 7769657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme.
    Shi L; Summers DF; Peng Q; Galarz JM
    Virology; 1995 Apr; 208(1):38-47. PubMed ID: 11831724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cap and polyA tail enhance translation initiation at the hepatitis C virus internal ribosome entry site by a discontinuous scanning, or shunting, mechanism.
    Wiklund L; Spångberg K; Goobar-Larsson L; Schwartz S
    J Hum Virol; 2001; 4(2):74-84. PubMed ID: 11437317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5.
    Egloff MP; Decroly E; Malet H; Selisko B; Benarroch D; Ferron F; Canard B
    J Mol Biol; 2007 Sep; 372(3):723-36. PubMed ID: 17686489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation.
    Elango N; Li Y; Shivshankar P; Katz MS
    J Cell Biochem; 2006 Nov; 99(4):1108-21. PubMed ID: 16767703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient screening system for influenza virus cap-dependent endonuclease inhibitors.
    Shibagaki Y; Ikuta N; Iguchi S; Takaki K; Watanabe S; Kaihotsu M; Masuda C; Maeyama K; Mizumoto K; Hattori S
    J Virol Methods; 2014 Jun; 202():8-14. PubMed ID: 24613941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rotavirus open cores catalyze 5'-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase.
    Chen D; Luongo CL; Nibert ML; Patton JT
    Virology; 1999 Dec; 265(1):120-30. PubMed ID: 10603323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient 5' cap-dependent RNA purification : use in identifying and studying subsets of RNA.
    Bajak EZ; Hagedorn CH
    Methods Mol Biol; 2008; 419():147-60. PubMed ID: 18369981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease.
    Ulmanen I; Broni B; Krug RM
    J Virol; 1983 Jan; 45(1):27-35. PubMed ID: 6823015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative structural and functional analysis of orthomyxovirus polymerase cap-snatching domains.
    Guilligay D; Kadlec J; Crépin T; Lunardi T; Bouvier D; Kochs G; Ruigrok RW; Cusack S
    PLoS One; 2014; 9(1):e84973. PubMed ID: 24454773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus.
    Krischuns T; Lukarska M; Naffakh N; Cusack S
    Annu Rev Biochem; 2021 Jun; 90():321-348. PubMed ID: 33770447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.