These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 8955303)
1. The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). Leveau JH; van der Meer JR J Bacteriol; 1996 Dec; 178(23):6824-32. PubMed ID: 8955303 [TBL] [Abstract][Full Text] [Related]
2. Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134. Leveau JH; van der Meer JR Gene; 1997 Nov; 202(1-2):103-14. PubMed ID: 9427552 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Laemmli CM; Leveau JH; Zehnder AJ; van der Meer JR J Bacteriol; 2000 Aug; 182(15):4165-72. PubMed ID: 10894723 [TBL] [Abstract][Full Text] [Related]
4. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Liu S; Ogawa N; Miyashita K Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916 [TBL] [Abstract][Full Text] [Related]
5. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Vedler E; Kõiv V; Heinaru A Gene; 2000 Mar; 245(1):161-8. PubMed ID: 10713456 [TBL] [Abstract][Full Text] [Related]
6. Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. Matrubutham U; Harker AR J Bacteriol; 1994 Apr; 176(8):2348-53. PubMed ID: 8157603 [TBL] [Abstract][Full Text] [Related]
7. Genetic and molecular analysis of a regulatory region of the herbicide 2,4-dichlorophenoxyacetate catabolic plasmid pJP4. You IS; Ghosal D Mol Microbiol; 1995 Apr; 16(2):321-31. PubMed ID: 7565094 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Clément P; Pieper DH; González B Microbiology (Reading); 2001 Aug; 147(Pt 8):2141-2148. PubMed ID: 11495991 [TBL] [Abstract][Full Text] [Related]
9. Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. Kaphammer B; Kukor JJ; Olsen RH J Bacteriol; 1990 May; 172(5):2280-6. PubMed ID: 2158967 [TBL] [Abstract][Full Text] [Related]
10. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja D; Ledger T; Pieper DH; González B J Bacteriol; 2003 Mar; 185(5):1534-42. PubMed ID: 12591870 [TBL] [Abstract][Full Text] [Related]
11. Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Gene; 1989 Nov; 83(2):225-32. PubMed ID: 2583528 [TBL] [Abstract][Full Text] [Related]
12. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134. Ledger T; Pieper DH; Pérez-Pantoja D; González B Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935 [TBL] [Abstract][Full Text] [Related]
13. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Pérez-Pantoja D; Guzmán L; Manzano M; Pieper DH; González B Appl Environ Microbiol; 2000 Apr; 66(4):1602-8. PubMed ID: 10742248 [TBL] [Abstract][Full Text] [Related]
14. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. van der Meer JR; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Apr; 173(8):2425-34. PubMed ID: 2013566 [TBL] [Abstract][Full Text] [Related]
15. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. Perkins EJ; Gordon MP; Caceres O; Lurquin PF J Bacteriol; 1990 May; 172(5):2351-9. PubMed ID: 2185214 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. van der Meer JR; Frijters AC; Leveau JH; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Jun; 173(12):3700-8. PubMed ID: 2050630 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis of the inducer recognition sites of the LysR-type transcriptional regulator TfdT of Burkholderia sp. NK8. Lang GH; Ogawa N Appl Microbiol Biotechnol; 2009 Jul; 83(6):1085-94. PubMed ID: 19319522 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate. Leveau JH; König F; Füchslin H; Werlen C; Van Der Meer JR Mol Microbiol; 1999 Jul; 33(2):396-406. PubMed ID: 10411755 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. Ogawa N; McFall SM; Klem TJ; Miyashita K; Chakrabarty AM J Bacteriol; 1999 Nov; 181(21):6697-705. PubMed ID: 10542171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]