These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 8955387)
1. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. Zeng G; Ye S; Larson TJ J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387 [TBL] [Abstract][Full Text] [Related]
2. Multiple promoters are responsible for transcription of the glpEGR operon of Escherichia coli K-12. Yang B; Larson TJ Biochim Biophys Acta; 1998 Mar; 1396(1):114-26. PubMed ID: 9524241 [TBL] [Abstract][Full Text] [Related]
3. Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. Weissenborn DL; Wittekindt N; Larson TJ J Biol Chem; 1992 Mar; 267(9):6122-31. PubMed ID: 1372899 [TBL] [Abstract][Full Text] [Related]
4. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
5. Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. Schweizer HP; Po C J Bacteriol; 1996 Sep; 178(17):5215-21. PubMed ID: 8752340 [TBL] [Abstract][Full Text] [Related]
6. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli. Garces F; Fernández FJ; Gómez AM; Pérez-Luque R; Campos E; Prohens R; Aguilar J; Baldomà L; Coll M; Badía J; Vega MC Biochemistry; 2008 Nov; 47(44):11424-33. PubMed ID: 18844374 [TBL] [Abstract][Full Text] [Related]
7. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
8. Action at a distance for glp repressor control of glpTQ transcription in Escherichia coli K-12. Yang B; Gerhardt SG; Larson TJ Mol Microbiol; 1997 May; 24(3):511-21. PubMed ID: 9179845 [TBL] [Abstract][Full Text] [Related]
9. Genetic identification of the DNA binding domain of Escherichia coli LexA protein. Thliveris AT; Mount DW Proc Natl Acad Sci U S A; 1992 May; 89(10):4500-4. PubMed ID: 1584782 [TBL] [Abstract][Full Text] [Related]
10. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. Larson TJ; Cantwell JS; van Loo-Bhattacharya AT J Biol Chem; 1992 Mar; 267(9):6114-21. PubMed ID: 1556120 [TBL] [Abstract][Full Text] [Related]
11. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Jahreis K; Lengeler JW Mol Microbiol; 1993 Jul; 9(1):195-209. PubMed ID: 8412665 [TBL] [Abstract][Full Text] [Related]
12. Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression. Charlier D; Roovers M; Van Vliet F; Boyen A; Cunin R; Nakamura Y; Glansdorff N; Piérard A J Mol Biol; 1992 Jul; 226(2):367-86. PubMed ID: 1640456 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of LexA mutant repressors with enhanced DNA binding affinity. Oertel-Buchheit P; Porte D; Schnarr M; Granger-Schnarr M J Mol Biol; 1992 Jun; 225(3):609-20. PubMed ID: 1602473 [TBL] [Abstract][Full Text] [Related]
14. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface. Moody CL; Tretyachenko-Ladokhina V; Laue TM; Senear DF; Cocco MJ Biochemistry; 2011 Aug; 50(31):6622-32. PubMed ID: 21688840 [TBL] [Abstract][Full Text] [Related]
16. Mutational studies with the trp repressor of Escherichia coli support the helix-turn-helix model of repressor recognition of operator DNA. Kelley RL; Yanofsky C Proc Natl Acad Sci U S A; 1985 Jan; 82(2):483-7. PubMed ID: 3881764 [TBL] [Abstract][Full Text] [Related]
17. The primary structure of the DeoR repressor from Escherichia coli K-12. Valentin-Hansen P; Højrup P; Short S Nucleic Acids Res; 1985 Aug; 13(16):5927-36. PubMed ID: 2994018 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. Rosey EL; Stewart GC J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164 [TBL] [Abstract][Full Text] [Related]
19. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Alekshun MN; Kim YS; Levy SB Mol Microbiol; 2000 Mar; 35(6):1394-404. PubMed ID: 10760140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]