BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8955409)

  • 1. Structure-function relationships among wild-type variants of Staphylococcus aureus beta-lactamase: importance of amino acids 128 and 216.
    Voladri RK; Tummuru MK; Kernodle DS
    J Bacteriol; 1996 Dec; 178(24):7248-53. PubMed ID: 8955409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relocation of the catalytic carboxylate group in class A beta-lactamase: the structure and function of the mutant enzyme Glu166-->Gln:Asn170-->Asp.
    Chen CC; Herzberg O
    Protein Eng; 1999 Jul; 12(7):573-9. PubMed ID: 10436083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine.
    Chen CC; Herzberg O
    Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site.
    Trehan I; Beadle BM; Shoichet BK
    Biochemistry; 2001 Jul; 40(27):7992-9. PubMed ID: 11434768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
    Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a chromosomal gene encoding type B beta-lactamase in phage group II isolates of Staphylococcus aureus.
    Voladri RK; Kernodle DS
    Antimicrob Agents Chemother; 1998 Dec; 42(12):3163-8. PubMed ID: 9835509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O
    Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circularly permuted beta-lactamase from Staphylococcus aureus PC1.
    Pieper U; Hayakawa K; Li Z; Herzberg O
    Biochemistry; 1997 Jul; 36(29):8767-74. PubMed ID: 9220963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid.
    Swarén P; Golemi D; Cabantous S; Bulychev A; Maveyraud L; Mobashery S; Samama JP
    Biochemistry; 1999 Jul; 38(30):9570-6. PubMed ID: 10423234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the non-conserved residue at position 104 of class A beta-lactamases in susceptibility to mechanism-based inhibitors.
    Guo F; Huynh J; Dmitrienko GI; Viswanatha T; Clarke AJ
    Biochim Biophys Acta; 1999 Apr; 1431(1):132-47. PubMed ID: 10209286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain.
    Stojanoski V; Adamski CJ; Hu L; Mehta SC; Sankaran B; Zwart P; Prasad BV; Palzkill T
    Biochemistry; 2016 May; 55(17):2479-90. PubMed ID: 27073009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of asparagine 152 in catalysis of beta-lactam hydrolysis by Escherichia coli AmpC beta-lactamase studied by site-directed mutagenesis.
    Dubus A; Normark S; Kania M; Page MG
    Biochemistry; 1995 Jun; 34(23):7757-64. PubMed ID: 7779822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262.
    Pegg KM; Liu EM; George AC; LaCuran AE; Bethel CR; Bonomo RA; Oelschlaeger P
    Protein Sci; 2014 Oct; 23(10):1451-60. PubMed ID: 25131397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of serine 237 in class A beta-lactamase of Proteus vulgaris modifies its unique substrate specificity.
    Tamaki M; Nukaga M; Sawai T
    Biochemistry; 1994 Aug; 33(33):10200-6. PubMed ID: 8060986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the active-site residues asparagine 167 and lysine 161 of the IMP-1 metallo beta-lactamase.
    Haruta S; Yamamoto ET; Eriguchi Y; Sawai T
    FEMS Microbiol Lett; 2001 Apr; 197(1):85-9. PubMed ID: 11287151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins.
    Zawadzke LE; Smith TJ; Herzberg O
    Protein Eng; 1995 Dec; 8(12):1275-85. PubMed ID: 8869640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the conserved amino acids of the 'SDN' loop (Ser130, Asp131 and Asn132) in a class A beta-lactamase studied by site-directed mutagenesis.
    Jacob F; Joris B; Lepage S; Dusart J; Frère JM
    Biochem J; 1990 Oct; 271(2):399-406. PubMed ID: 2173561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of four beta-lactamases produced by Staphylococcus aureus.
    Zygmunt DJ; Stratton CW; Kernodle DS
    Antimicrob Agents Chemother; 1992 Feb; 36(2):440-5. PubMed ID: 1605608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site serine mutants of the Streptomyces albus G beta-lactamase.
    Jacob F; Joris B; Frère JM
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):647-52. PubMed ID: 1908220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.