These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 8955413)
1. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). Shima J; Hesketh A; Okamoto S; Kawamoto S; Ochi K J Bacteriol; 1996 Dec; 178(24):7276-84. PubMed ID: 8955413 [TBL] [Abstract][Full Text] [Related]
2. Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Ochi K; Zhang D; Kawamoto S; Hesketh A Mol Gen Genet; 1997 Nov; 256(5):488-98. PubMed ID: 9413432 [TBL] [Abstract][Full Text] [Related]
3. A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. Hesketh A; Ochi K J Antibiot (Tokyo); 1997 Jun; 50(6):532-5. PubMed ID: 9268013 [No Abstract] [Full Text] [Related]
4. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Hu H; Ochi K Appl Environ Microbiol; 2001 Apr; 67(4):1885-92. PubMed ID: 11282646 [TBL] [Abstract][Full Text] [Related]
5. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Okamoto-Hosoya Y; Hosaka T; Ochi K Microbiology (Reading); 2003 Nov; 149(Pt 11):3299-3309. PubMed ID: 14600242 [TBL] [Abstract][Full Text] [Related]
6. Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Okamoto-Hosoya Y; Okamoto S; Ochi K Appl Environ Microbiol; 2003 Jul; 69(7):4256-9. PubMed ID: 12839808 [TBL] [Abstract][Full Text] [Related]
7. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Hosoya Y; Okamoto S; Muramatsu H; Ochi K Antimicrob Agents Chemother; 1998 Aug; 42(8):2041-7. PubMed ID: 9687404 [TBL] [Abstract][Full Text] [Related]
8. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). Nishimura K; Hosaka T; Tokuyama S; Okamoto S; Ochi K J Bacteriol; 2007 May; 189(10):3876-83. PubMed ID: 17384192 [TBL] [Abstract][Full Text] [Related]
9. Streptomyces relC mutants with an altered ribosomal protein ST-L11 and genetic analysis of a Streptomyces griseus relC mutant. Ochi K J Bacteriol; 1990 Jul; 172(7):4008-16. PubMed ID: 2113916 [TBL] [Abstract][Full Text] [Related]
10. A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. Ochi K J Gen Microbiol; 1990 Dec; 136(12):2405-12. PubMed ID: 2079628 [TBL] [Abstract][Full Text] [Related]
11. Genetically engineered rpsL merodiploidy impacts secondary metabolism and antibiotic resistance in Streptomyces. Koshla O; Lopatniuk M; Borys O; Misaki Y; Kravets V; Ostash I; Shemediuk A; Ochi K; Luzhetskyy A; Fedorenko V; Ostash B World J Microbiol Biotechnol; 2021 Mar; 37(4):62. PubMed ID: 33730177 [TBL] [Abstract][Full Text] [Related]
12. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Tamehiro N; Hosaka T; Xu J; Hu H; Otake N; Ochi K Appl Environ Microbiol; 2003 Nov; 69(11):6412-7. PubMed ID: 14602594 [TBL] [Abstract][Full Text] [Related]
13. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Chang HM; Chen MY; Shieh YT; Bibb MJ; Chen CW Mol Microbiol; 1996 Sep; 21(5):1075-85. PubMed ID: 8885276 [TBL] [Abstract][Full Text] [Related]
14. Expression of an heterologous gene activating actinorhodin biosynthesis in Streptomyces lividans and Streptomyces coelicolor. Romero NM; Parro V; Mellado RP FEMS Microbiol Lett; 1994 Mar; 116(3):301-6. PubMed ID: 7514144 [TBL] [Abstract][Full Text] [Related]
15. Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Yonekawa T; Ohnishi Y; Horinouchi S Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2273-2280. PubMed ID: 10517580 [TBL] [Abstract][Full Text] [Related]
16. A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Xu J; Tozawa Y; Lai C; Hayashi H; Ochi K Mol Genet Genomics; 2002 Oct; 268(2):179-89. PubMed ID: 12395192 [TBL] [Abstract][Full Text] [Related]
17. Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. Kawamoto S; Watanabe M; Saito N; Hesketh A; Vachalova K; Matsubara K; Ochi K J Bacteriol; 2001 Oct; 183(20):6009-16. PubMed ID: 11567001 [TBL] [Abstract][Full Text] [Related]
18. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. Kim ES; Hong HJ; Choi CY; Cohen SN J Bacteriol; 2001 Apr; 183(7):2198-203. PubMed ID: 11244057 [TBL] [Abstract][Full Text] [Related]
19. Identification of bldA mutants of Streptomyces griseus. Kwak J; McCue LA; Kendrick KE Gene; 1996 May; 171(1):75-8. PubMed ID: 8675034 [TBL] [Abstract][Full Text] [Related]
20. A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. Ishizuka H; Horinouchi S; Kieser HM; Hopwood DA; Beppu T J Bacteriol; 1992 Dec; 174(23):7585-94. PubMed ID: 1339426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]