These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8955418)
1. 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. Ferain T; Schanck AN; Delcour J J Bacteriol; 1996 Dec; 178(24):7311-5. PubMed ID: 8955418 [TBL] [Abstract][Full Text] [Related]
2. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. Liu S; Nichols NN; Dien BS; Cotta MA J Ind Microbiol Biotechnol; 2006 Jan; 33(1):1-7. PubMed ID: 16193282 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid or pyruvate. Aarnikunnas J; Von Weymarn N; Rönnholm K; Leisola M; Palva A Biotechnol Bioeng; 2003 Jun; 82(6):653-63. PubMed ID: 12673764 [TBL] [Abstract][Full Text] [Related]
5. Lactobacillus plantarum ldhL gene: overexpression and deletion. Ferain T; Garmyn D; Bernard N; Hols P; Delcour J J Bacteriol; 1994 Feb; 176(3):596-601. PubMed ID: 8300514 [TBL] [Abstract][Full Text] [Related]
6. Relative catalytic efficiency of ldhL- and ldhD-encoded products is crucial for optical purity of lactic acid produced by lactobacillus strains. Zheng Z; Sheng B; Ma C; Zhang H; Gao C; Su F; Xu P Appl Environ Microbiol; 2012 May; 78(9):3480-3. PubMed ID: 22344644 [TBL] [Abstract][Full Text] [Related]
7. D-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Lapierre L; Germond JE; Ott A; Delley M; Mollet B Appl Environ Microbiol; 1999 Sep; 65(9):4002-7. PubMed ID: 10473408 [TBL] [Abstract][Full Text] [Related]
8. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. Goffin P; Deghorain M; Mainardi JL; Tytgat I; Champomier-Vergès MC; Kleerebezem M; Hols P J Bacteriol; 2005 Oct; 187(19):6750-61. PubMed ID: 16166538 [TBL] [Abstract][Full Text] [Related]
9. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Viana R; Yebra MJ; Galán JL; Monedero V; Pérez-Martínez G Res Microbiol; 2005; 156(5-6):641-9. PubMed ID: 15882939 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Kylä-Nikkilä K; Hujanen M; Leisola M; Palva A Appl Environ Microbiol; 2000 Sep; 66(9):3835-41. PubMed ID: 10966398 [TBL] [Abstract][Full Text] [Related]
11. Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. Goffin P; Lorquet F; Kleerebezem M; Hols P J Bacteriol; 2004 Oct; 186(19):6661-6. PubMed ID: 15375150 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Romero S; Merino E; Bolívar F; Gosset G; Martinez A Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Guo T; Zhang L; Xin Y; Xu Z; He H; Kong J Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28842545 [No Abstract] [Full Text] [Related]
14. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans. Wang L; Cai Y; Zhu L; Guo H; Yu B Appl Environ Microbiol; 2014 Dec; 80(23):7134-41. PubMed ID: 25217009 [TBL] [Abstract][Full Text] [Related]
15. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus. Li C; Sun JW; Zhang GF; Liu LB J Dairy Sci; 2016 Jan; 99(1):104-11. PubMed ID: 26585479 [TBL] [Abstract][Full Text] [Related]
16. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Gu SA; Jun C; Joo JC; Kim S; Lee SH; Kim YH Enzyme Microb Technol; 2014 May; 58-59():29-35. PubMed ID: 24731822 [TBL] [Abstract][Full Text] [Related]
17. Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene. Garmyn D; Ferain T; Bernard N; Hols P; Delcour J Appl Environ Microbiol; 1995 Jan; 61(1):266-72. PubMed ID: 7887607 [TBL] [Abstract][Full Text] [Related]
18. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Jang JW; Jung HM; Im DK; Jung MY; Oh MK Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805 [TBL] [Abstract][Full Text] [Related]
19. High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Ladero V; Ramos A; Wiersma A; Goffin P; Schanck A; Kleerebezem M; Hugenholtz J; Smid EJ; Hols P Appl Environ Microbiol; 2007 Mar; 73(6):1864-72. PubMed ID: 17261519 [TBL] [Abstract][Full Text] [Related]
20. Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Goffin P; Muscariello L; Lorquet F; Stukkens A; Prozzi D; Sacco M; Kleerebezem M; Hols P Appl Environ Microbiol; 2006 Dec; 72(12):7933-40. PubMed ID: 17012588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]