These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8955418)

  • 41. Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance.
    Hols P; Ramos A; Hugenholtz J; Delcour J; de Vos WM; Santos H; Kleerebezem M
    J Bacteriol; 1999 Sep; 181(17):5521-6. PubMed ID: 10464231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1.
    Kang TS; Korber DR; Tanaka T
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8693-703. PubMed ID: 23912115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase.
    Neves AR; Ramos A; Shearman C; Gasson MJ; Santos H
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3467-3476. PubMed ID: 12427938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nicotinic acid controls lactate production by K1-LDH: a Saccharomyces cerevisiae strain expressing a bacterial LDH gene.
    Colombié S; Sablayrolles JM
    J Ind Microbiol Biotechnol; 2004 Jun; 31(5):209-15. PubMed ID: 15205990
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene.
    Zhang X; Zhang S; Shi Y; Shen F; Wang H
    FEMS Microbiol Lett; 2014 Jul; 356(1):89-96. PubMed ID: 24861375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of preculturing conditions on growth of Lactobacillus rhamnosus on medium containing glucose and citrate.
    Jyoti BD; Suresh AK; Venkatesh KV
    Microbiol Res; 2004; 159(1):35-42. PubMed ID: 15160605
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo 13C saturation transfer effect of the lactate dehydrogenase reaction.
    Xu S; Yang J; Shen J
    Magn Reson Med; 2007 Feb; 57(2):258-64. PubMed ID: 17260357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.
    Sun L; Zhang C; Lyu P; Wang Y; Wang L; Yu B
    Sci Rep; 2016 Nov; 6():37916. PubMed ID: 27885267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Homolactate fermentation by metabolically engineered Escherichia coli strains.
    Zhu Y; Eiteman MA; DeWitt K; Altman E
    Appl Environ Microbiol; 2007 Jan; 73(2):456-64. PubMed ID: 17122396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 31P and 13C nuclear magnetic resonance studies of metabolic pathways in Pasteurella multocida characterization of a new mannitol-producing metabolic pathway.
    Rager MN; Binet MR; Bouvet OM
    Eur J Biochem; 1999 Aug; 263(3):695-701. PubMed ID: 10469132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli.
    Ugurbil K; Brown TR; den Hollander JA; Glynn P; Shulman RG
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3742-6. PubMed ID: 358201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of acid and alkali stress on extracellular metabolite profile of Lactobacillus plantarum ATCC 14917.
    Wu L; Wang W; Wu Z; Pan D; Zeng X; Guo Y; Lian L
    J Basic Microbiol; 2020 Aug; 60(8):722-729. PubMed ID: 32452552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Citrate metabolism by Enterococcus faecalis FAIR-E 229.
    Sarantinopoulos P; Kalantzopoulos G; Tsakalidou E
    Appl Environ Microbiol; 2001 Dec; 67(12):5482-7. PubMed ID: 11722896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum.
    Sedewitz B; Schleifer KH; Götz F
    J Bacteriol; 1984 Oct; 160(1):462-5. PubMed ID: 6480562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum.
    Okano K; Zhang Q; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):643-50. PubMed ID: 19597813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutathione improves the cold resistance of Lactobacillus sanfranciscensis by physiological regulation.
    Zhang J; Li Y; Chen W; Du GC; Chen J
    Food Microbiol; 2012 Sep; 31(2):285-92. PubMed ID: 22608235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes.
    Rainey PM; MacKenzie NE
    Mol Biochem Parasitol; 1991 Apr; 45(2):307-15. PubMed ID: 1903845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate determination of 13C enrichments in nonprotonated carbon atoms of isotopically enriched amino acids by 1H nuclear magnetic resonance.
    Wendisch VF; de Graaf AA; Sahm H
    Anal Biochem; 1997 Feb; 245(2):196-202. PubMed ID: 9056211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
    Engels V; Lindner SN; Wendisch VF
    J Bacteriol; 2008 Dec; 190(24):8033-44. PubMed ID: 18849435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.