BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8955462)

  • 1. Glycerol carbon contributes to hepatic glucose production during the first eight hours in healthy term infants.
    Sunehag A; Gustafsson J; Ewald U
    Acta Paediatr; 1996 Nov; 85(11):1339-43. PubMed ID: 8955462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuated hepatic glucose production but unimpaired lipolysis in newborn infants of mothers with diabetes.
    Sunehag A; Ewald U; Larsson A; Gustafsson J
    Pediatr Res; 1997 Oct; 42(4):492-7. PubMed ID: 9380442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely preterm infants (< 28 weeks) are capable of gluconeogenesis from glycerol on their first day of life.
    Sunehag A; Ewald U; Gustafsson J
    Pediatr Res; 1996 Oct; 40(4):553-7. PubMed ID: 8888282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of theophylline on glucose production and lipolysis in preterm infants (< or = 32 weeks).
    Diderholm B; Ewald U; Gustafsson J
    Pediatr Res; 1999 May; 45(5 Pt 1):674-9. PubMed ID: 10231863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus.
    Puhakainen I; Koivisto VA; Yki-Järvinen H
    J Clin Endocrinol Metab; 1992 Sep; 75(3):789-94. PubMed ID: 1517368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid transport in the human newborn. Palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output.
    Bougnères PF; Karl IE; Hillman LS; Bier DM
    J Clin Invest; 1982 Aug; 70(2):262-70. PubMed ID: 7096567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parenteral glycerol enhances gluconeogenesis in very premature infants.
    Sunehag AL
    Pediatr Res; 2003 Apr; 53(4):635-41. PubMed ID: 12612213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy substrate production in infants born small for gestational age.
    Diderholm B; Ewald U; Ahlsson F; Gustafsson J
    Acta Paediatr; 2007 Jan; 96(1):29-34. PubMed ID: 17187599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-dependent control of hepatic glycogen stores in healthy humans.
    Stingl H; Krssák M; Krebs M; Bischof MG; Nowotny P; Fürnsinn C; Shulman GI; Waldhäusl W; Roden M
    Diabetologia; 2001 Jan; 44(1):48-54. PubMed ID: 11206411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus.
    Nurjhan N; Consoli A; Gerich J
    J Clin Invest; 1992 Jan; 89(1):169-75. PubMed ID: 1729269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gluconeogenesis in very low birth weight infants receiving total parenteral nutrition.
    Sunehag AL; Haymond MW; Schanler RJ; Reeds PJ; Bier DM
    Diabetes; 1999 Apr; 48(4):791-800. PubMed ID: 10102696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure, lipolysis, and glucose production in preterm infants treated with theophylline.
    Fjeld CR; Cole FS; Bier DM
    Pediatr Res; 1992 Dec; 32(6):693-8. PubMed ID: 1287561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycerol metabolism and triglyceride-fatty acid cycling in the human newborn: effect of maternal diabetes and intrauterine growth retardation.
    Patel D; Kalhan S
    Pediatr Res; 1992 Jan; 31(1):52-8. PubMed ID: 1594331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glucagon on glucose production, lipolysis, and gluconeogenesis in familial hyperinsulinism.
    Cederblad F; Ewald U; Gustafsson J
    Horm Res; 1998; 50(2):94-8. PubMed ID: 9701703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipolysis and insulin sensitivity at birth in infants who are large for gestational age.
    Ahlsson FS; Diderholm B; Ewald U; Gustafsson J
    Pediatrics; 2007 Nov; 120(5):958-65. PubMed ID: 17974732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans.
    Fanelli C; Calderone S; Epifano L; De Vincenzo A; Modarelli F; Pampanelli S; Perriello G; De Feo P; Brunetti P; Gerich JE
    J Clin Invest; 1993 Oct; 92(4):1617-22. PubMed ID: 8408616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin dose-response characteristics for suppression of glycerol release and conversion to glucose in humans.
    Nurjhan N; Campbell PJ; Kennedy FP; Miles JM; Gerich JE
    Diabetes; 1986 Dec; 35(12):1326-31. PubMed ID: 3533681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of lipolysis decreases lipid oxidation and gluconeogenesis from lactate but not fasting hyperglycemia or total hepatic glucose production in NIDDM.
    Puhakainen I; Yki-Järvinen H
    Diabetes; 1993 Dec; 42(12):1694-9. PubMed ID: 8243814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol gluconeogenesis in fasting humans.
    Baba H; Zhang XJ; Wolfe RR
    Nutrition; 1995; 11(2):149-53. PubMed ID: 7647479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased lipolysis in non-obese pregnant women studied in the third trimester.
    Diderholm B; Stridsberg M; Ewald U; Lindeberg-Nordén S; Gustafsson J
    BJOG; 2005 Jun; 112(6):713-8. PubMed ID: 15924525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.