BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8955521)

  • 1. Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes.
    Freitas AJ; Rocha JB; Wolosker H; Souza DO
    Brain Res; 1996 Nov; 738(2):257-64. PubMed ID: 8955521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of mercurial and methylmercurial ions on the phrenic nerve and diaphragm of the mouse.
    Fu WM; Liu CY; Lin-Shiau SY
    Arch Int Pharmacodyn Ther; 1988; 295():52-66. PubMed ID: 3245746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2,3-Dimercaptopropanol inhibits Ca2+ transport in microsomes from brain but not from fast-skeletal muscle.
    Quinhones EB; Souza DO; Rocha JB
    Neurochem Res; 2001 Mar; 26(3):251-6. PubMed ID: 11495549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of calcium transport by mercury salts in rat cerebellum and cerebral cortex in vitro.
    Yallapragada PR; Rajanna S; Fail S; Rajanna B
    J Appl Toxicol; 1996; 16(4):325-30. PubMed ID: 8854219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule.
    Kone BC; Brenner RM; Gullans SR
    J Membr Biol; 1990 Jan; 113(1):1-12. PubMed ID: 2304068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse monocytes (RAW CELLS) and the handling of cysteine and homocysteine S-conjugates of inorganic mercury and methylmercury.
    Zalups RK; Koropatnick J; Joshee L
    J Toxicol Environ Health A; 2007 May; 70(10):799-809. PubMed ID: 17454556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres.
    Salama G; Abramson JJ; Pike GK
    J Physiol; 1992 Aug; 454():389-420. PubMed ID: 1335505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) is irreversibly inhibited by inorganic (Hg2+) and organic mercury (CH3Hg+): mechanism and kinetics.
    Ragunathan N; Busi F; Pluvinage B; Sanfins E; Dupret JM; Rodrigues-Lima F; Dairou J
    FEBS Lett; 2010 Aug; 584(15):3366-9. PubMed ID: 20591428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of Ca2+ fluxes in brain microsomes by K+ and Na+: modulation by sulfated polysaccharides and trifluoperazine.
    Rocha JB; Wolosker H; Souza DO; de Meis L
    J Neurochem; 1996 Feb; 66(2):772-8. PubMed ID: 8592151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hg2+ signaling in trout hepatoma (RTH-149) cells: involvement of Ca2+-induced Ca2+ release.
    Burlando B; Bonomo M; Fabbri E; Dondero F; Viarengo A
    Cell Calcium; 2003 Sep; 34(3):285-93. PubMed ID: 12887976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on tissue and urine mercury levels following prolonged methylmercury exposure in rats.
    Pingree SD; Simmonds PL; Woods JS
    Toxicol Sci; 2001 Jun; 61(2):224-33. PubMed ID: 11353131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity.
    Pentyala S; Ruggeri J; Veerraju A; Yu Z; Bhatia A; Desaiah D; Vig P
    Indian J Exp Biol; 2010 Jul; 48(7):737-43. PubMed ID: 20929057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heavy metal on rat liver microsomal Ca2(+)-ATPase and Ca2+ sequestering. Relation to SH groups.
    Zhang GH; Yamaguchi M; Kimura S; Higham S; Kraus-Friedmann N
    J Biol Chem; 1990 Feb; 265(4):2184-9. PubMed ID: 1688849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cadmium on Ca2+ transport in brain microsomes.
    Shah J; Pant HC
    Brain Res; 1991 Dec; 566(1-2):127-30. PubMed ID: 1839962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Cd2+, Pb2+ and CH3Hg+ on high voltage-activated calcium currents in pheochromocytoma (PC12) cells: potency, reversibility, interactions with extracellular Ca2+ and mechanisms of block.
    Shafer TJ
    Toxicol Lett; 1998 Nov; 99(3):207-21. PubMed ID: 9862287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of glutathione peroxidase 4 on the mercury-triggered ferroptosis in renal cells: implications for the antagonism between selenium and mercury.
    Chen J; Ma M; Wang R; Gao M; Hu L; Liu S; Xu M
    Metallomics; 2023 Mar; 15(3):. PubMed ID: 36869799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemia-induced inhibition of calcium uptake into rat brain microsomes mediated by Mg2+/Ca2+ ATPase.
    Parsons JT; Churn SB; DeLorenzo RJ
    J Neurochem; 1997 Mar; 68(3):1124-34. PubMed ID: 9048758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mercury on the isolated heart muscle are prevented by DTT and cysteine.
    Vassallo DV; Moreira CM; Oliveira EM; Bertollo DM; Veloso TC
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):113-8. PubMed ID: 10198276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase activity by cadmium, lead and mercury.
    Hechtenberg S; Beyersmann D
    Enzyme; 1991; 45(3):109-15. PubMed ID: 1840035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.