BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8955630)

  • 1. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses--a review.
    Dixon RA; Lamb CJ; Masoud S; Sewalt VJ; Paiva NL
    Gene; 1996 Nov; 179(1):61-71. PubMed ID: 8955630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots.
    Baldridge GD; O'Neill NR; Samac DA
    Plant Mol Biol; 1998 Dec; 38(6):999-1010. PubMed ID: 9869406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and metabolic engineering of isoflavonoid biosynthesis.
    Du H; Huang Y; Tang Y
    Appl Microbiol Biotechnol; 2010 May; 86(5):1293-312. PubMed ID: 20309543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Engineering of Alfalfa (Medicago sativa L.).
    Wang D; Khurshid M; Sun ZM; Tang YX; Zhou ML; Wu YM
    Protein Pept Lett; 2016; 23(5):495-502. PubMed ID: 26972972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage.
    Lei Y; Hannoufa A; Yu P
    Int J Mol Sci; 2017 Jan; 18(2):. PubMed ID: 28146083
    [No Abstract]   [Full Text] [Related]  

  • 6. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases.
    Guo D; Chen F; Wheeler J; Winder J; Selman S; Peterson M; Dixon RA
    Transgenic Res; 2001 Oct; 10(5):457-64. PubMed ID: 11708655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa.
    He XZ; Dixon RA
    Plant Cell; 2000 Sep; 12(9):1689-702. PubMed ID: 11006341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and commercialization of reduced lignin alfalfa.
    Barros J; Temple S; Dixon RA
    Curr Opin Biotechnol; 2019 Apr; 56():48-54. PubMed ID: 30268938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa.
    Austin S; Bingham ET; Koegel RG; Mathews DE; Shahan MN; Straub RJ; Burgess RR
    Ann N Y Acad Sci; 1994 May; 721():234-44. PubMed ID: 8010673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.
    Ferrer JL; Austin MB; Stewart C; Noel JP
    Plant Physiol Biochem; 2008 Mar; 46(3):356-70. PubMed ID: 18272377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenlpropanoid pathway genes in elicitor-induced cell suspension cultures.
    Ni W; Fahrendorf T; Ballance GM; Lamb CJ; Dixon RA
    Plant Mol Biol; 1996 Feb; 30(3):427-38. PubMed ID: 8605296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility.
    Baucher M; Bernard-Vailhé MA; Chabbert B; Besle JM; Opsomer C; Van Montagu M; Botterman J
    Plant Mol Biol; 1999 Feb; 39(3):437-47. PubMed ID: 10092173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing the expression of transgenic traits into elite alfalfa germplasm using a supertransgene configuration in heterozygous conditions.
    Jozefkowicz C; Frare R; Fox R; Odorizzi A; Arolfo V; Pagano E; Basigalup D; Ayub N; Soto G
    Theor Appl Genet; 2018 May; 131(5):1111-1123. PubMed ID: 29397404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.).
    Tong Z; Li H; Zhang R; Ma L; Dong J; Wang T
    Plant Sci; 2015 Oct; 239():230-7. PubMed ID: 26398807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of phytoalexin biosynthesis in engineered plants for disease resistance.
    Jeandet P; Clément C; Courot E; Cordelier S
    Int J Mol Sci; 2013 Jul; 14(7):14136-70. PubMed ID: 23880860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants.
    Oommen A; Dixon RA; Paiva NL
    Plant Cell; 1994 Dec; 6(12):1789-1803. PubMed ID: 7866024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic expression of tea MYB genes alter spatial flavonoid accumulation in alfalfa (Medicago sativa).
    Zheng G; Fan C; Di S; Wang X; Gao L; Dzyubenko N; Chapurin V; Pang Y
    PLoS One; 2019; 14(7):e0218336. PubMed ID: 31265465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation with TT8 and HB12 RNAi Constructs in Model Forage (Medicago sativa, Alfalfa) Affects Carbohydrate Structure and Metabolic Characteristics in Ruminant Livestock Systems.
    Li X; Zhang Y; Hannoufa A; Yu P
    J Agric Food Chem; 2015 Nov; 63(43):9590-600. PubMed ID: 26492548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.).
    Reddy MS; Chen F; Shadle G; Jackson L; Aljoe H; Dixon RA
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16573-8. PubMed ID: 16263933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining enhanced biomass density with reduced lignin level for improved forage quality.
    Gallego-Giraldo L; Shadle G; Shen H; Barros-Rios J; Fresquet Corrales S; Wang H; Dixon RA
    Plant Biotechnol J; 2016 Mar; 14(3):895-904. PubMed ID: 26190611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.